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ABSTRACT
In this paper, the Neumann-Dirichlet boundary problem for a system of nonlinear vis-
coelastic equations of Kirchhoff type with Balakrishnan-Taylor term is considered. At
first, a local existence is established by the linear approximation together with the Faedo-
Galerkin method. Then, by establishing several reasonable conditions and suitable en-
ergy inequalities, the solution of the problem admits a general decay in time.
Keywords: System of viscoelastic equations, Kirchhoff type; Balakrishnan-Taylor
term; Faedo-Galerkin method; General decay

1 Introduction

In this paper, we consider the initial-boundary value problem for a system of viscoelastic equa-
tions of Kirchhoff type with Balakrishnan-Taylor damping as follows

utt − λuxxt − [µ∗ + µ1 (⟨ux (t) , uxt (t)⟩)]uxx + λ1ut +

∫ t

0

g1 (t− s)uxx (s) ds

= f1(u, v) + F1 (x, t) , 0 < x < 1, t > 0,

vtt − µ2

(
∥vx (t)∥2

)
vxx + λ2vt +

∫ t

0

g2 (t− s) vxx (s) ds

= f2(u, v) + F2 (x, t) , 0 < x < 1, t > 0,
u(0, t) = u(1, t) = vx (0, t) = v (1, t) = 0,
u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x), v(x, 0) = ṽ0(x), vt(x, 0) = ṽ1(x),

(1.1)

where λ, λ1, λ2, µ∗ are given positive constants and ũ0, ṽ0, ũ1, ṽ1, µi, fi, gi, (i = 1, 2)
are given functions satisfying some conditions specified later. In (1.1), the nonlinear terms
µ1 (⟨ux (t) , uxt (t)⟩) and µ2

(
∥vx (t)∥2

)
depend on the integrals

⟨ux (t) , uxt (t)⟩ =
∫ 1

0

ux (x, t)uxt (x, t) dx
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named the Balakrishnan-Taylor damped term and ∥vx (t)∥2 =
∫ 1

0

v2x (x, t) dx respectively.

It is well known that the mathematical models of Kirchhoff-type equations come from de-
scribing small vibrations of an elastic stretched string. The original equation is first investigated
by Kirchhoff [16] and modelled in the form

ρhutt =

(
P0 +

Eh

2L

∫ L

0

u2x (y, t) dy

)
uxx, (1.2)

where u = u(x; t) is the lateral displacement at the space coordinate x and the time t, ρ is
the mass density, h is the cross-section area, L is the length, E is the Young modulus, P0

is the initial axial tension. Until now, numerous problems of Kirchhoff-type wave equations
associated with various boundary and initial conditions have been studied extensively, see [5],
[7], [18], [19], [24], [28], and the references therein.

The system (1.1) is regarded as a combination of the Kirchhoff-type wave equation and the
equation with the Balakrishnan-Taylor damping ⟨ux(t), uxt(t)⟩, in which the original equation
of (1.1)1 was first proposed by Balakrishnan and Taylor in 1989, see [1], modelling for flight
structures with viscous and nonlinear nonlocal damping in one-dimensional case

ϱutt + EIuxxxx − cuxxt

−

[
H +

EA

2L

∫ L

0

|ux|2 dx+ τ

∣∣∣∣∫ L

0

uxuxtdx

∣∣∣∣2(N+η) ∫ L

0

uxuxtdx

]
uxx = 0, (1.3)

where u = u(x, t) represents the transversal deflection of an extensible beam of length 2L > 0
in the rest position, ϱ > 0 is the mass density, E is Young’s modulus of elasticity, I is the
cross-sectional moment of inertia, H is the axial force (either traction or compression), A is
the cross-sectional area, c > 0 is the coefficient of viscous damping, τ > 0 is the Balakrishnan-

Taylor damping coefficient, 0 ≤ τ < 1, 0 ≤ η <
1

2
and N ∈ N. The equation (1.3) seems

to be related to the panel flutter equation and spillover problem which studied by Bass and
Zes in [2]. In recent years, the equations with the Balakrishnan-Taylor damping have been
received a large amount of interest, in which properties of solutions such as stability, decay and
blow-up in finite time have been considered, see [3], [4], [8], [11]- [15], [17], [22], [24]- [27] and
the references therein.

An important question of asymptotic behavior of solutions was raised by Clark [6] that the
solutions of the proposed problem with a damping in the form ∆2ut were exponentially decayed
when the time t went to infinity. In [25], Tatar and Zarai considered the initial-boundary value
problem 

utt −
(
ξ0 + ξ1 ∥∇u(t)∥2 + ξ2⟨∇u(t),∇ut(t)⟩

)
∆u+

∫ t

0

g(t− s)∆u(s)ds

= |u|p u, in Ω× (0,+∞),
u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,
u (x, t) = 0, t > 0, x ∈ ∂Ω

(1.4)

and proved a result of exponentially decayed energy of the solutions provided by the fact that
the kernel was decayed exponentially. After that, the results in [25] have been improved in [29],
in which the authors have proved a polynomial decay provided by the relaxation function

g decaying polynomially and satisfying the condition g′ (t) ≤ −ξ (g (t))1+
1
p (ξ is a positive
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constant). In [27], Tavares et al. used the theory of C0−semigroup to study the well-posedness
and long-time dynamics of a class of extensible beams with nonlocal Balakrishnan-Taylor and
frictional damping

utt+∆2u−
[
β + γ ∥∇u∥22 + δ |⟨∇u(t),∇ut(t)⟩|q−2 ⟨∇u(t),∇ut(t)⟩

]
∆u+κut+ f(u) = h, (1.5)

where (x, t) ∈ Ω× R+, and boundary conditions Dirichlet-Newman. In the case that Balakrishn-
an-Taylor terms appear in both hand-side of the equation, Ngoc et. al. [23] investigated the
following strongly damped wave equation

utt − λuxxt − µ
(
t, ⟨ux(t), uxt(t)⟩, ∥u(t)∥2 , ∥ux(t)∥2

)
uxx

= f(x, t, u, ux, ut, ⟨ux(t), uxt(t)⟩, ∥u(t)∥2 , ∥ux(t)∥2), 0 < x < 1, 0 < t < T.
(1.6)

By using the linear approximation combined with the Faedo-Galerkin method and the weak
compact method, the authors proved the unique local existence of weak solutions. In addition,
in the case µ = B

(
∥ux(t)∥2

)
+σ (⟨ux(t), uxt(t)⟩) and f = −λ1ut+f (u)+F (x, t), they put several

suitable hypotheses and sufficient conditions for the nonlinear function σ(·, ·) of Balakrishnan-
Taylor damping to obtain an exponential decay of solutions.

Although, there have been numerous published results of single equations with Balakrishnan-
Taylor damping, studies on system of equations with Balakrishnan-Taylor damping have re-
cieved little attention. It seems that the first result of system of equations with Balakrishnan-
Taylor damping has been considered by Mu and Ma [22], of which the proposed model has
described as follows

utt −
(
a+ b ∥∇u(t)∥2 +σ

∫
Ω

∇u∇utdx
)
∆u+

∫ t

0

g1(t− s)∆u(s)ds = f1(u, v),

(x, t) ∈ Ω× R+,

vtt −
(
a+ b ∥∇v(t)∥2 +σ

∫
Ω

∇v∇vtdx
)
∆v +

∫ t

0

g2(t− s)∆v(s)ds = f2(u, v),

(x, t) ∈ Ω× R+,

(1.7)

where Ω is a bounded domain in Rn; a, b, σ are given the positive constants. By the energy
method, the authors obtained an arbitrary decay of solutions according to the relaxation func-
tions gi satisfying g

′
i (t) ≤ −ξ (t) gi (t) , (i = 1, 2), where ξ (t) is a positive and non-increasing

function. Recently, Nam et al. [20] have considered a system of asymmetric wave equations
with Kirchhoff-Carrier and Balakrishnan-Taylor terms, namely

utt − λuxxt − µ1 (t, ⟨ux (t) , uxt (t)⟩)uxx = f1 (x, t, u, v, ux, vx, ut, vt) ,

vtt − µ2

(
t, ∥v (t)∥2 , ∥vx (t)∥2

)
vxx = f2 (x, t, u, v, ux, vx, ut, vt),

(x, t) ∈ (0, 1)× (0, T ) ,
(1.8)

associated with Robin-Dirichlet boundary conditions. The authors have proved the existence
and uniqueness of local solutions established by the Faedo-Galerkin method and the argu-
ments of compactness. Furthermore, the exponential decay of solutions has been also studied.
However, the general decay of solutions of (1.8) has not been studied.

In light of the aforementioned works, we inherit the methods and techniques used for [20]
and [23] to establish the existence and uniqueness of local weak solutions of the problem (1.1).
In additon, for certain class of relaxation functions and certain initial data, we prove that
the decay rate of the solution energy is similar to that of relaxation functions which is not
necessarily of exponential or polynomial type. Our paper is organized as follows. In Sect. 2,
the existence and uniqueness of local weak solutions of the problem (1.1) are established. In
Sect. 3, by adopting and modifying the method of [20] and [23], we show the statement and
the proof of our general decay result.
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2 Main results

2.1 The existence and uniqueness theorem

In this section, we shall study the existence and uniqueness of weak solution for the problem
(1.1).

Definition 2.1. The weak solution of the problem (1.1) is a pair of functions (u, v) belonging
to the following functional spaces{

(u, v) ∈ L∞(0, T ;
(
H1

0 ∩H2
)
×
(
V ∩H2

)
) : (u′, v′) ∈ L∞(0, T ;

(
H1

0 ∩H2
)
× V ),

(u′′, v′′) ∈
[
L2(0, T ;H1

0 ) ∩ L∞(0, T ;L2)
]
× L∞(0, T ;L2)

}
,

and satisfying the following variational problem

⟨u′′ (t) , ϕ⟩+ λ⟨u′x (t) , ϕx⟩+ µ̄1 [u] (t) ⟨ux (t) , ϕx⟩+ λ1 ⟨u′ (t) , ϕ⟩

=

∫ t

0

g1 (t− s) ⟨ux (s) , ϕx⟩ds+ ⟨f1 [u, v] (t) + F1 (t) , ϕ⟩,

⟨v′′ (t) , ϕ̃⟩+ µ [v] (t)
〈
vx (t) , ϕ̃x

〉
+ λ2

〈
v′ (t) , ϕ̃

〉
=

∫ t

0

g2 (t− s) ⟨vx (s) , ϕ̃x⟩ds+ ⟨f2 [u, v] (t) + F2 (t) , ϕ̃⟩,

(2.1)

for all (ϕ, ϕ̃) ∈ H1
0 × V, together with the initial conditions

(u (0) , u′ (0)) = (ũ0, ũ1) , (v (0) , v′ (0)) = (ṽ0, ṽ1) , (2.2)

where V = {v ∈ H1 : v (1) = 0} and{
µ̄1 [u] (t) = µ∗ + µ1 (⟨ux (t) , u′x (t)⟩) , µ2 [v] (t) = µ2

(
∥vx (t)∥2

)
,

fi [u, v] (x, t) = fi (u(x, t), v(x, t)) , i = 1, 2.
(2.3)

We make the following assumptions:
(H1) (ũ0, ṽ0) ∈ (H1

0 ∩H2)× (V ∩H2) , (ũ1, ṽ1) ∈ (H1
0 ∩H2)× V and ṽ0x = 0;

(H2) µ1 ∈ C1 (R) and there exist a positive constant µ1∗ < µ∗ such that
µ1 (y) ≥ −µ1∗,∀y ∈ R;

(H3) µ2 ∈ C1 (R+) and there exist µ2∗ > 0 such that µ2 (z) ≥ µ2∗,∀z ∈ R+;
(H4) gi ∈ H1 (R+) , i = 1, 2;
(H5) fi ∈ C1 (R2) , Fi ∈ C1 ([0, 1]× R+) i = 1, 2.
For each T > 0, we denote

VT = {(u, v) ∈ L∞ (0, T ; (H1
0 ∩H2)× (V ∩H2)) :

(u′, v′) ∈ L∞ (0, T ; (H1
0 ∩H2)× V ) , (u′′, v′′) ∈ L2 (0, T ;H1

0 × L2)} , (2.4)

is a Banach space with respect to the norm

∥(u, v)∥VT
= max

{
∥(u, v)∥L∞(0,T ;(H1

0∩H2)×(V ∩H2)) , (2.5)

∥(u′, v′)∥L∞(0,T ;(H1
0∩H2)×V ) , ∥(u

′′, v′′)∥L2(0,T ;H1
0×L2)

}
.
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We note that

W1 (T )=
{
(u, v) ∈ C0

(
[0, T ];H1

0 × V
)
∩C1

(
[0, T ];L2 × L2

)
: u′∈L2

(
0, T ;H1

0

)}
(2.6)

is also a Banach space with respect to the norm (Lions [21])

∥(u, v)∥W1(T ) = ∥u∥C0([0,T ];H1
0)

+ ∥v∥C0([0,T ];V ) + ∥u′∥C0([0,T ];L2)

+ ∥v′∥C0([0,T ];L2) + ∥u′∥L2(0,T ;H1
0 )
. (2.7)

For every M > 0, we put

W (M,T ) =
{
(u, v) ∈ VT : ∥(u, v)∥VT

≤M
}
,

W1 (M,T ) = { (u, v) ∈ W (M,T ) : (u′′, v′′) ∈ L∞ (0, T ;L2 × L2)} . (2.8)

Now, we establish the following recurrent sequence {(um, vm)}m∈N. The first term is chosen
as (u0, v0) ≡ (0, 0) , suppose that

(um−1, vm−1) ∈ W1 (M,T ) , (2.9)

we associate (1.1) with the following problem.
Find (um, vm) ∈ W1(M,T ) (m ≥ 1) which satisfies the linear variational problem

⟨u′′m (t) , ϕ⟩+ λ⟨u′mx (t) , ϕx⟩+ µ̄1m (t) ⟨umx (t) , ϕx⟩+ λ1⟨u′m (t) , ϕ⟩

= ⟨F1m (t) , ϕ⟩+
∫ t

0

g1 (t− s) ⟨umx (s) , ϕx⟩ds,

⟨v′′m (t) , ϕ̃⟩+ µ2m (t)
〈
vmx (t) , ϕ̃x

〉
+ λ2⟨v′m (t) , ϕ̃⟩

= ⟨F2m (t) , ϕ̃⟩+
∫ t

0

g2 (t− s) ⟨vmx (s) , ϕ̃x⟩ds,

(um (0) , u′m (0)) = (ũ0, ũ1) , (vm (0) , v′m (0)) = (ṽ0, ṽ1) ,

(2.10)

for all (ϕ, ϕ̃) ∈ H1
0 × V, a.e. t ∈ (0, T ), where

µ̄1m (t) = µ∗ + µ1 [um−1] (t) = µ∗ + µ1

(
⟨∇um−1 (t) ,∇u′m−1 (t)⟩

)
, (2.11)

µ2m (t) = µ2 [vm−1] (t) = µ2

(
∥∇vm−1 (t)∥2

)
,

Fim (x, t) = fi [um−1, vm−1] (x, t) + Fi (x, t)

= fi (um−1 (x, t) , vm−1 (x, t)) + Fi (x, t) , i = 1, 2.

Then we have the following theorem that confirms the existence and uniqueness of solutions.

Theorem 2.2. Let (H1)− (H5) hold. Then there exist constants M, T > 0 such that:
(i) For (u0, v0) ≡ (0, 0) , there exists a recurrent sequence {(um, vm)} ⊂ W1(M,T ) defined

by (2.9)-(2.11).
(ii) The recurrent sequence {(um, vm)} converges strongly to a pair functions (u, v) in the

space W1 (T ) and (u, v) ∈ W1 (M,T ) is the unique weak solution of problem (1.1). Moreover,
we have the following estimate

∥(um, vm)− (u, v)∥W1(T ) ≤ CTK
m
T , for all m ∈ N, (2.12)

where KT ∈ [0, 1) and CT is a contant independent of m.
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Proof. Using the Faedo-Galerkin approximation combined with the Banach fixed point prin-
ciple, and then performing appropriately priori evaluations and weak compactness arguments,
we prove the existence of a linear approximate sequence {(um, vm)}m∈N ⊂ W1(M,T ). Next, we
prove that {(um, vm)}m∈N is a Cauchy sequence in W1 (T ), which converges to (u, v) to be the
weak solution of (1.1), and also satisfies the estimation of convergent rate as in (2.12). Finally,
the uniqueness of the solution is proved by Gronwall’s lemma. The detailed proof is the same
one as in [20], [23]. Therefore, we omit the details here.

2.2 General decay of the solution

In what follows, we prove that if

µ∗ ∥ũ0x∥2+
∫ ∥ṽ0x∥2

0

µ2 (z) dz−p
∫ 1

0

F (ũ0 (x) , ṽ0 (x)) dx > 0, with p > 2, and if the intial energy

E(0) and ∥F1(t)∥2+ ∥F2(t)∥2 are small enough, then every global weak solution of the problem
(1.1) is generally decay as t→ +∞. For this purpose, we strengthen the following assumptions

(H̄1) (ũ0, ṽ0) ∈ (H1
0 ∩H2)× (V ∩H2) , (ũ1, ṽ1) ∈ (H1

0 ∩H2)× V , and ṽ0x = 0;

(H̄2) µ1 ∈ C1 (R) , and there exists the positive constant µ1∗ < µ∗ such that
(i) µ1(y) ≥ −µ1∗,∀y ∈ R, (ii) yµ1(y) ≥ 0, ∀y ∈ R;

(H̄3) µ2 ∈ C1 (R+) , and there exist the positive constants µ2∗, χ∗ such that

(i) µ2(y) ≥ µ2∗, ∀y ≥ 0, (ii) yµ2(y) ≥ χ∗

∫ y

0

µ2(z)dz, ∀y ≥ 0;

(H̄4) gi ∈ C1 (R+,R+) such that

(i) L∗ = min

{
µ∗ −

∫ ∞

0

g1 (s) ds, µ2∗ −
∫ ∞

0

g2 (s) ds

}
> 0,

(ii) there exists the function ξ ∈ C1(R+) such that

ξ′(t) ≤ 0 < ξ(t), g′i (t) ≤ −ξ(t)gi (t) < 0, ∀t ≥ 0,

∫ ∞

0

ξ (s) ds = ∞;

(H̄5) There exist the function F ∈ C2(R2;R) and the constants α, β > 2,
d1, d̄1 > 0such that

(i)
∂F
∂u

(u, v) = f1 (u, v) ,
∂F
∂v

(u, v) = f2 (u, v) , ∀(u, v) ∈ R2,

(ii) uf1 (u, v) + vf2 (u, v) ≤ d1F(u, v), ∀(u, v) ∈ R2,

(iii) F (u, v) ≤ d̄1

(
|u|α + |v|β

)
, ∀(u, v) ∈ R2;

(H̄6) F1, F2 ∈ L∞ (R+;L
2) ∩ L1 (R+;L

2) such that there exist two constants

C0, γ0 > 0 satisfying ∥F1(t)∥2 + ∥F2(t)∥2 ≤ C0 exp (−γ0t) , ∀t ≥ 0;

(H̄7) p > max

{
2, d1,

d1
χ∗

}
and

µ1∗

µ∗
≤ 1− d1

p
.

From Theorem 2.2, the problem (1.1) has a local weak solution (u, v) such that

(u, v) ∈ C([0, T ];
(
H1

0 ∩H2
)
× V ) ∩ C1([0, T ];H1

0 × L2) (2.13)

∩ L∞(0, T ;
(
H1

0 ∩H2
)
×
(
V ∩H2

)
),

(u′, v′) ∈ C([0, T ];H1
0 × L2) ∩ L∞(0, T ;

(
H1

0 ∩H2
)
× V ),

(u′′, v′′) ∈ L∞(0, T ;H2 ∩H1
0 )× L∞(0, T ;L2).

Consider the Lyapunov functional as follows

L(t) = E(t) + δψ(t), (2.14)
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where δ > 0 is chosen later and

E(t) =
1

2

(
∥u′(t)∥2 + ∥v′(t)∥2

)
+

(
1

2
− 1

p

)[
(g1 ∗ u)(t) + (g2 ∗ v)(t) + Ẽ (t)

]
+

1

p
I(t),

Ẽ (t) = (µ∗ − ḡ1 (t)) ∥ux(t)∥2 − ḡ2 (t) ∥vx(t)∥2 +
∫ ∥vx(t)∥2

0

µ2(z)dz,

I(t) = (g1 ∗ u)(t) + (g2 ∗ v)(t) + Ẽ (t)− p

∫ 1

0

F (u (x, t) , v (x, t)) dx,

ḡi (t) =

∫ t

0

gi (s) ds, (gi ∗ ū)(t) =
∫ t

0

gi (t− s) ∥ūx (s)− ūx (t)∥ ds, i = 1, 2,

ψ(t) = ⟨u′(t), u(t)⟩+ ⟨v′(t), v(t)⟩+ λ

2
∥ux(t)∥2 +

λ1
2
∥u(t)∥2 + λ2

2
∥v(t)∥2.

Then, we have the following estimate for E ′(t).

Lemma 2.3. Let (u, v) be a weak solution of (1.1). Then, the energy functional E(t) satisfies

(i) E ′ (t) ≤ 1

2
(∥F1 (t)∥+ ∥F2 (t)∥) +

1

2
(∥F1 (t)∥+ ∥F2 (t)∥)

(
∥u′ (t)∥2 + ∥v′ (t)∥2

)
,

(ii) E ′ (t) ≤ −λ ∥u′x (t)∥
2 −

(
λ∗ −

ε1
2

) (
∥u′ (t)∥2 + ∥v′ (t)∥2

)
−1

2
ξ(t) [(g1 ∗ u) (t) + (g2 ∗ v) (t)] +

1

2ε1
ρ(t),

(2.15)

for all ε1 > 0, where λ∗ = min {λ1, λ2} , ρ(t) = ∥F1 (t)∥2 + ∥F2 (t)∥2 .

Proof. Multiplying (1.1)1 by u′(x, t), (1.1)2 by v′(x, t) and integrating over [0, 1], we get

E ′ (t) = −λ1 ∥u′ (t)∥2 − λ2 ∥v′ (t)∥2 − λ ∥u′x (t)∥
2

(2.16)

+
1

2
[(g′1 ∗ u) (t) + (g′2 ∗ v) (t)]−

1

2

(
g1 (t) ∥ux(t)∥2 + g2 (t) ∥vx(t)∥2

)
− ⟨ux(t), u′x(t)⟩µ1 (⟨ux(t), u′x(t)⟩) + ⟨F1(t), u

′(t)⟩+ ⟨F2(t), v
′(t)⟩.

On the other hand

⟨F1(t), u
′(t)⟩ ≤ 1

2ε1
∥F1 (t)∥2 +

ε1
2
∥u′ (t)∥2 , (2.17)

⟨F2(t), v
′(t)⟩ ≤ 1

2ε1
∥F2 (t)∥2 +

ε1
2
∥v′ (t)∥2 , ∀ε1 > 0,

0 ≤ ⟨ux(t), u′x(t)⟩µ1 (⟨ux(t), u′x(t)⟩) ,
1

2
[(g′1 ∗ u) (t) + (g′2 ∗ v) (t)] ≤ −1

2
[ξ(t) (g1 ∗ u) (t) + ξ(t) (g2 ∗ v) (t)] ,

then it follows from (2.16), (2.17) that the inequalities (2.15) are valid. Lemma 2.3 is proved.

Now, putting

R∗ =

(
2pE∗

(p− 2)L∗

)1/2

, E∗ =

(
E(0) +

1

2
ρ

)
exp (ρ) , ρ =

∫ ∞

0

(∥F1 (t)∥+ ∥F2 (t)∥) dt,

we obtain the following lemma.
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Lemma 2.4. Assume that (H̄1) − (H̄7) hold. Let (ũ0, ṽ0) ∈ (H2 ∩H1
0 ) × (H2 ∩ V ) such that

I(0) > 0 and the initial energy E(0) satisfies

(i) ḡ1 (∞) + d1d̄1max
{
Rα−2

∗ , Rβ−2
∗
}
< µ∗ − µ1∗,

(ii)

(
1− d1

p

)
ḡ1 (∞) +

d1
p
ḡ2 (∞) + d1d̄1max

{
Rα−2

∗ , Rβ−2
∗
}

<

(
1− d1

p

)
µ∗+

d1µ2∗

p
− µ1∗,

(iii)
d1
p
ḡ1 (∞) +

(
1− d1

p

)
ḡ2 (∞) + d1d̄1max

{
Rα−2

∗ , Rβ−2
∗
}

<
d1µ∗

p
+

(
1− d1

pχ∗

)
µ2∗,

(iv) ḡ2 (∞) + d1d̄1max
{
Rα−2

∗ , Rβ−2
∗
}
<

(
d1
p

+ 1− d1
pχ∗

)
µ2∗,

(v) η∗ = L∗ − pd̄1max
(
Rα−2

∗ , Rβ−2
∗
)
> 0.

(2.18)

Then I(t) > 0, for all t ≥ 0.

Proof. By the continuity of I(t) and I(0) > 0, there exists T̃ > 0 such that

I(t) = I(u(t), v (t)) > 0, ∀t ∈ [0, T̃ ]. (2.19)

It is easy to see that
Ẽ (t) ≥ L∗

(
∥ux(t)∥2 + ∥vx(t)∥2

)
. (2.20)

From (2.19) and (2.20), this implies that

E(t) ≥ 1

2

(
∥u′(t)∥2 + ∥v′(t)∥2

)
+

(p− 2)L∗

2p

(
∥ux(t)∥2 + ∥vx(t)∥2

)
, ∀t ∈ [0, T̃ ]. (2.21)

Using Lemma 2.3, (2.21), and Gronwall’s inequality, we obtain

∥ux(t)∥2 + ∥vx(t)∥2 ≤
2pE(t)

(p− 2)L∗
≤ 2pE∗

(p− 2)L∗
≡ R2

∗, ∀t ∈ [0, T̃ ], (2.22)

∥u′(t)∥2 + ∥v′(t)∥2 ≤ 2E (t) ≤ 2E∗, ∀t ∈ [0, T̃ ].

Then, from the assumption (H̄5,(iii)) and (2.22), the result is

p

∫ 1

0

F (u (x, t) , v (x, t)) dx ≤ pd̄1

(
∥u(t)∥αLα + ∥v(t)∥β

Lβ

)
≤ pd̄1

(
∥ux(t)∥α + ∥vx(t)∥β

)
≤ pd̄1

(
Rα−2

∗ ∥ux(t)∥2 +Rβ−2
∗ ∥vx(t)∥2

)
≤ pd̄1max

{
Rα−2

∗ , Rβ−2
∗
} (

∥ux(t)∥2 + ∥vx(t)∥2
)
.

(2.23)

Therefore, we get

I (t) ≥ η∗
(
∥ux(t)∥2 + ∥vx(t)∥2

)
+ (g1 ∗ u) (t) + (g2 ∗ v) (t) ≥ 0, ∀t ∈ [0, T̃ ], (2.24)

where the constant η∗ > 0 is defined as in (2.18).
Next, we put T∞ = sup {T > 0 : I(t) > 0, ∀t ∈ [0, T ]} . Suppose that T∞ < +∞ then,

because of the continuity of I(t), we have I(T∞) ≥ 0. In case of I(T∞) > 0, by the same
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arguments as above, we can deduce that there exists T̃∞ > T∞ such that I(t) > 0, ∀t ∈ [0, T̃∞].
We obtain a contradiction to the definition of T∞. In case of I(T∞) = 0, it implies from (2.24)
that

0 = I(T∞) ≥ η∗
(
∥ux(T∞)∥2 + ∥vx(T∞)∥2

)
+ (g1 ∗ u) (T∞) + (g2 ∗ v) (T∞) ≥ 0.

Therefore
∥u(T∞)∥ = ∥v(T∞)∥ = (g1 ∗ u) (T∞) = (g2 ∗ v) (T∞) = 0.

By the fact that the function s 7−→ g1 (T∞ − s) ∥ux(T∞)− ux(s)∥2 is continuous on [0, T∞] and
g1 (T∞ − s) > 0, ∀s ∈ [0, T∞] , we have

(g1 ∗ u) (T∞) =

∫ T∞

0

g1 (T∞ − s) ∥ux(s)∥2 ds = 0,

it follows that ∥ux(s)∥2 = 0, ∀s ∈ [0, T∞] , it means that u (0) = 0. Similary, v (0) = 0. It leads
to I(0) = 0. We get a contradiction with I(0) > 0. Consequently, T∞ = +∞, i.e., I(t) > 0,
∀t ≥ 0. Lemma 2.4 is proved completely.

Next, we put

E1(t) = ∥u′(t)∥2 + ∥v′(t)∥2 + ∥ux(t)∥2 + ∥vx(t)∥2 + (g1 ∗ u) (t) + (g2 ∗ v) (t) + I(t). (2.25)

Then, we have the following lemma.

Lemma 2.5. There exist the positive constants β1, β̄1, β2, β̄2 such that

(i) β1E1(t) ≤ L(t) ≤ β2E1(t), ∀t ≥ 0, (2.26)

(ii) β̄1E1(t) ≤ E(t) ≤ β̄2E1(t), ∀t ≥ 0.

Proof. The functional L(t) can be written as follows

L(t) = 1

2

(
∥u′(t)∥2 + ∥v′(t)∥2

)
+
p− 2

2p
[(g1 ∗ u) (t) + (g2 ∗ v) (t)] +

p− 2

2p
Ẽ (t) +

1

p
I(t)

+δ (⟨u′(t), u(t)⟩+ ⟨v′(t), v(t)⟩) + δ

2

(
λ ∥ux(t)∥2 + λ1 ∥u(t)∥2 + λ2 ∥v(t)∥2

)
. (2.27)

From the following inequalities

|⟨u′(t), u(t)⟩| ≤ 1

2
∥u′(t)∥2 + 1

2
∥ux(t)∥2 ,

|⟨v′(t), v(t)⟩| ≤ 1

2
∥v′(t)∥2 + 1

2
∥vx(t)∥2 ,

we get

L(t) ≥ 1

2

(
∥u′(t)∥2 + ∥v′(t)∥2

)
+
p− 2

2p
[(g1 ∗ u) (t) + (g2 ∗ v) (t)] +

1

p
I(t)

+
(p− 2)L∗

2p

(
∥ux(t)∥2 + ∥vx(t)∥2

)
− δ

(
∥u′(t)∥2 + ∥ux(t)∥2

2
+

∥v′(t)∥2 + ∥vx(t)∥2

2

)

=
1− δ

2

(
∥u′(t)∥2 + ∥v′(t)∥2

)
+

(
(p− 2)L∗

2p
− δ

2

)(
∥ux(t)∥2 + ∥vx(t)∥2

)
+
p− 2

2p
[(g1 ∗ u) (t) + (g2 ∗ v) (t)] +

1

p
I(t) ≥ β1E1(t),
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where β1 = min
{

1−δ
2
, p−2

2p
, (p−2)L∗

2p
− δ

2
, 1

p

}
and 0 < δ < min

{
1; (p−2)L∗

p

}
.

Similarly, we can prove that

L(t) ≤ 1 + δ

2

(
∥u′(t)∥2 + ∥v′(t)∥2

)
+
p− 2

2p
[(g1 ∗ u) (t) + (g2 ∗ v) (t)]

+
p− 2

2p

(
µ∗ ∥ux(t)∥2 +

∫ ∥vx(t)∥2

0

µ2(z)dz

)
+ δ

∥ux(t)∥2 + ∥vx(t)∥2

2

+
δ

2

[
(λ+ λ1) ∥ux(t)∥2 + λ2 ∥vx(t)∥2

]
+

1

p
I(t).

Put µ∗
2max = max

0≤z≤R2
∗
µ2(z), we have

∫ ∥vx(t)∥2

0

µ2(z)dz ≤ µ∗
2max ∥vx(t)∥

2, hence

L(t) ≤ 1 + δ

2

(
∥u′(t)∥2 + ∥v′(t)∥2

)
+

[
(p− 2)

2p
µ∗ +

δ

2
(1 + λ+ λ1)

]
∥ux(t)∥2

+

[
p− 2

2p
µ∗
2max +

δ

2
(1 + λ2)

]
∥vx(t)∥2 +

p− 2

2p
[(g1 ∗ u) (t) + (g2 ∗ v) (t)] +

1

p
I(t)

≤ β2E1(t),

where β2 = max

{
1 + δ

2
,
(p− 2)µ∗

2p
+
δ (1 + λ+ λ1)

2
,
(p− 2)µ∗

2max

2p
+
δ (1 + λ2)

2

}
. Part (i) of

Lemma 2.5 is done. It is similar to prove Part (ii).

Lemma 2.6. The functional ψ(t) satisfies the following estimation

ψ′ (t) ≤ ∥u′ (t)∥2 + ∥v′ (t)∥2 +
(
d2
p

+
1

2ε3

)
[(g1 ∗ u) (t) + (g2 ∗ v) (t)] (2.28)

− δ1d2
p
I(t) +

1

2ε2
ρ(t)

−
[
(1− δ1) d2η

∗

p
− ε2

2
+

(
1− d2

p

)
µ∗ − µ1∗ −

(
1− d2

p
+
ε3
2

)
ḡ1 (∞)

]
∥ux(t)∥2

−
[
(1− δ1) d2η

∗

p
− ε2

2
−
(
1− d2

p
+
ε3
2

)
ḡ2 (∞) +

(
1− d2

pχ∗

)
µ2∗

]
∥vx(t)∥2 , (2.29)

for all ε2 > 0, ε3 > 0, δ1 ∈ (0, 1), and ρ(t) = ∥F1(t)∥2 + ∥F2(t)∥2 .

Proof. By multiplying (1.1)1 by u(x, t), (1.1)2 by v(x, t) and integrating over [0, 1], we obtain

ψ′ (t) = ∥u′ (t)∥2 + ∥v′ (t)∥2 − [µ∗ + µ1 (⟨ux(t), u′x(t)⟩) ] ∥ux(t)∥2 (2.30)

− ∥vx(t)∥2 µ2

(
∥vx(t)∥2

)
+ ⟨f1(u(t), v (t)), u(t)⟩

+ ⟨f2(u(t), v (t)), v(t)⟩+ ⟨F1(t), u(t)⟩+ ⟨F2(t), v(t)⟩

+

∫ t

0

g1 (t− s) ⟨ux (s) , ux (t)⟩ ds+
∫ t

0

g2 (t− s) ⟨vx (s) , vx (t)⟩ ds.
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Note that

−µ1 (⟨ux(t), u′x(t)⟩) ≤ µ1∗, (2.31)

⟨F1(t), u(t)⟩+ ⟨F2(t), v(t)⟩ ≤
ε2
2

(
∥ux(t)∥2 + ∥vx(t)∥2

)
+

1

2ε2
ρ(t),∫ ∥vx(t)∥2

0

µ2(z)dz ≤
1

χ∗
∥vx(t)∥2 µ2

(
∥vx(t)∥2

)
,

I(t) ≥ η∗
(
∥ux(t)∥2 + ∥vx(t)∥2

)
,

⟨f1(u(t), v (t)), u(t)⟩+ ⟨f2(u(t), v (t)), v(t)⟩ ≤ d1

∫ 1

0

F (u (x, t) , v (x, t)) dx

=
d1
p
Ẽ (t) +

d1
p
[(g1 ∗ u) (t) + (g2 ∗ v) (t)]−

d1
p
I(t)

≤ d1
p
Ẽ (t) +

d1
p
[(g1 ∗ u) (t) + (g2 ∗ v) (t)]−

δ1d1
p
I(t)− (1− δ1) d1η

∗

p

(
∥ux(t)∥2 + ∥vx(t)∥2

)
.

It’s not difficult, we have∫ t

0

g1 (t− s) ⟨ux (s) , ux (t)⟩ ds ≤
(
1 +

ε3
2

)
ḡ1 (t) ∥ux (t)∥2 +

1

2ε3
(g1 ∗ u) (t) ,∫ t

0

g2 (t− s) ⟨vx (s) , vx (t)⟩ ds ≤
(
1 +

ε3
2

)
ḡ2 (t) ∥vx (t)∥2 +

1

2ε3
(g2 ∗ v) (t) ,∀ε3 > 0.

(2.32)

Then, it follows from (2.30)-(2.32) that the inequality (2.29) is valid. Lemma 2.6 is proved.

Based on the above results, we can prove the main result in this section as follows.

Theorem 2.7. Assume that (H̄1)− (H̄7) hold. Let (ũ0, ṽ0) ∈ (H2 ∩H1
0 )× (H2 ∩ V ) such that

I(0) > 0 and the initial energy E(0) satisfy (2.18). Then, any global weak solution of problem
(1.1) is generally decay, i.e., there exist positive constants C̄, γ̄ such that

∥u′(t)∥2 + ∥v′(t)∥2 + ∥ux(t)∥2 + ∥vx(t)∥2 ≤ C̄ exp

(
−γ̄
∫ t

0

ξ (s) ds

)
, ∀t ≥ 0. (2.33)

Proof. It follows from (2.14), (2.15)ii and (2.29) that

L′(t) ≤ −
(
λ∗ −

ε1
2
− δ
)(

∥u′ (t)∥2 + ∥v′ (t)∥2
)
− 1

2
ξ(t) [(g1 ∗ u) (t) + (g2 ∗ v) (t)]

+ δ

(
d1
p

+
1

2ε3

)
[(g1 ∗ u) (t) + (g2 ∗ v) (t)]− δθ1 ∥ux(t)∥2 − δθ2 ∥vx(t)∥2

− δδ1d1
p

I(t) +
1

2

(
1

ε1
+

δ

ε2

)
ρ(t), (2.34)

where

θ1 = θ1 (δ1, ε2, ε3) =
(1− δ1) d1η

∗

p
− ε2

2
+

(
1− d1

p

)
µ∗ − µ1∗

−
(
1− d1

p
+
ε3
2

)
ḡ1 (∞) ,

θ2 = θ2 (δ1, ε2, ε3) =
(1− δ1) d1η

∗

p
− ε2

2
−
(
1− d1

p
+
ε3
2

)
ḡ2 (∞)

+

(
1− d1

pχ∗

)
µ2∗.
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We have

lim
δ1→0+,ε2→0+,ε3→0+

θ1(δ1, ε2, ε3) =
d1η

∗

p
+

(
1− d1

p

)
µ∗ − µ1∗ −

(
1− d1

p

)
ḡ1 (∞)

=
d1
p

[
L∗ − R̃∗ +

(
p

d1
− 1

)
(µ∗ − ḡ1 (∞))− pµ1∗

d1

]
≡ θ∗1,

lim
δ1→0+,ε2→0+,ε3→0+

θ2(δ1, ε2, ε3) =
d1η

∗

p
−
(
1− d1

p

)
ḡ2 (∞) +

(
1− d1

pχ∗

)
µ2∗

=
d1
p

[
L∗ − R̃∗ −

(
p

d1
− 1

)
ḡ2 (∞) +

(
p

d1
− 1

χ∗

)
µ2∗

]
≡ θ∗2,

where η∗ = L∗ − R̃∗, R̃∗ = pd̄1max
{
Rα−2

∗ , Rβ−2
∗
}
.

Note that, we have θ∗1 > 0 provided by the conditions (2.18) (i), (ii), and also have θ∗2 > 0 by
(2.18) (iii), (iv). Thus, we can choose δ1 ∈ (0, 1) and ε2 > 0, ε3 > 0 small enough such that

θ1 = θ1(δ1, ε2, ε3) > 0, θ2 = θ2(δ1, ε2, ε3) > 0. (2.35)

Moreover, we continue by choosing ε1 > 0, δ > 0 small enough such that

θ̄1 = λ∗ −
ε1
2
− δ > 0, 0 < δ < min

{
1;

(p− 2)L∗

p

}
. (2.36)

Put

θ̄2 = min {δθ1, δθ2} , θ̄3 =
δδ1d1
p

, θ̄4 = δ

(
d1
p

+
1

2ε3

)
, θ̄∗ = min

{
θ̄1, θ̄2, θ̄3

}
. (2.37)

From (2.34), this implies that

L′(t) ≤ −θ̄1
(
∥u′ (t)∥2 + ∥v′ (t)∥2

)
− θ̄2

(
∥ux(t)∥2 + ∥vx(t)∥2

)
(2.38)

− θ̄3I(t) + θ̄4 [(g1 ∗ u) (t) + (g2 ∗ v) (t)] +
1

2

(
1

ε1
+

δ

ε2

)
ρ(t)

≤ −θ̄∗
[
∥u′ (t)∥2 + ∥v′ (t)∥2 + ∥ux(t)∥2 + ∥vx(t)∥2 + I(t)

]
+ θ̄4 [(g1 ∗ u) (t) + (g2 ∗ v) (t)] +

1

2

(
1

ε1
+

δ

ε2

)
ρ(t)

≤ −θ̄∗E1(t) +
(
θ̄∗ + θ̄4

)
[(g1 ∗ u) (t) + (g2 ∗ v) (t)] +

1

2

(
1

ε1
+

δ

ε2

)
ρ(t)

≤ − θ̄∗
β̄2
E(t) +

(
θ̄∗ + θ̄4

)
[(g1 ∗ u) (t) + (g2 ∗ v) (t)] +

1

2

(
1

ε1
+

δ

ε2

)
ρ(t).
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Combining (2.15)ii and (2.38), we conclude that

ξ(t)L′(t) ≤ − θ̄∗
β̄2
ξ(t)E(t) +

(
θ̄∗ + θ̄4

)
ξ(t) [(g1 ∗ u) (t) + (g2 ∗ v) (t)] (2.39)

+
1

2

(
1

ε1
+

δ

ε2

)
ξ(0)ρ(t)

≤ − θ̄∗
β̄2
ξ(t)E(t) + 2

(
θ̄∗ + θ̄4

)(
−E ′(t) +

1

2ε1
ρ(t)

)
+

1

2

(
1

ε1
+

δ

ε2

)
ξ(0)ρ(t)

= − θ̄∗
β̄2
ξ(t)E(t)− 2

(
θ̄∗ + θ̄4

)
E ′(t) +

1

2

[
θ̄∗ + θ̄4
ε1

+

(
1

ε1
+

δ

ε2

)
ξ(0)

]
ρ(t)

≤ − θ̄∗
β̄2
ξ(t)E(t)− 2

(
θ̄∗ + θ̄4

)
E ′(t) + C̄0e

−γ0t, (2.40)

where C̄0 =
1

2

[
θ̄∗+θ̄4
ε1

+
(

1
ε1
+ δ

ε2

)
ξ(0)

]
C0.

For convenience, we continue to define the new functional

L(t) = ξ(t)L(t) + 2
(
θ̄∗ + θ̄4

)
E(t). (2.41)

It is easy to see that

L(t) ≤ ξ(0)L(t) + 2
(
θ̄∗ + θ̄4

)
E(t) (2.42)

≤ ξ(0)β2E1(t) + 2
(
θ̄∗ + θ̄4

)
E(t)

≤
[
β2
β̄1
ξ(0) + 2

(
θ̄∗ + θ̄4

)]
E(t) ≡ β̂2E(t).

By direct computations, it yields

L′(t) = ξ′(t)L(t) + ξ(t)L′(t) + 2
(
θ̄∗ + θ̄4

)
E ′(t)

≤ − θ̄∗
β̄2
ξ(t)E(t) + C̄0e

−γ0t ≤ − θ̄∗

β̄2β̂2
ξ(t)L(t) + C̄0e

−γ0t. (2.43)

Choosing 0 < γ̄ < min

{
θ̄∗

β̄2β̂2
,
γ0
ξ(0)

}
, from (2.43), we get

L′(t) + γ̄ξ(t)L(t) ≤ C̄0e
−γ0t. (2.44)

Integrating (2.44) with respect to time variable, we obtain

L(t) ≤
(
L(0) +

C̄0

γ0 − γ̄ξ(0)

)
exp

(
−γ̄
∫ t

0

ξ(s)ds

)
. (2.45)

On the other hand, we have

L(t) = ξ(t)L(t) + 2
(
θ̄∗ + θ̄4

)
E(t)

≥ 2
(
θ̄∗ + θ̄4

)
E(t) ≥ 2

(
θ̄∗ + θ̄4

)
β̄1E1(t), (2.46)

E1 (t) ≥ ∥u′(t)∥2 + ∥v′(t)∥2 + ∥ux(t)∥2 + ∥vx(t)∥2 .

Combining (2.45) and (2.46), we get (2.33). The proof of Theorem 2.7 is completed.
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[26] Tatar, N.E., Zaräı, A. (2011). On a Kirchhoff equation with Balakrishnan-Taylor damping
and source term, Dyn. Contin. Discrete Impuls. Symt. Ser. A, Math. Anal. 18 (5), 615-627.

[27] Tavares, E.H.G., Silva, M.A.J., Narciso, V. (2020). Long-time dynamics of Balakrishnan-
Taylor extensible beams, J. Dyn. Diff. Eqns, 32 (2).

[28] Triet, N.A., Ngoc, L.T.P., Long, N.T. (2010). On a nonlinear Kirchhoff-Carrier wave
equation associated with Robin conditions, Nonlinear Anal. RWA. 11, 3363-3388.
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