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ABSTRACT
In the current work, we study a Cauchy problem for a time-fractional pseudo-parabolic
equation with a globally Lipschitz source term. We prove the unique existence of a mild
solution to the problem, by the common Banach fixed point theorem. This solution is
then verified that exists globally in time by Grönwall’s inequality. Compare to previ-
ous works about the similar issuse, we approach in a way that does not require using
weighted spaces. Although our approach share a similar spirit to previous studies, our
method seems to be more precise and natural.
Keywords: Global solutions, time-fractional Cauchy problem, pseudo-parabolic equa-
tion

1 Introduction

In this paper, we investigate the following Cauchy problem
CD

α
t (I −∆)u(x, t)= ∆u(x, t) +K(u(x, t)) (x, t) ∈ D × R+,

u(x, t)= 0, (x, t) ∈ ∂D × R+,

u(x, t)= u0(x), (x, t) ∈ D × {0},
(1.1)

where D is a smooth bounded domain of RN , N ⩾ 1, u0 is the initial data and CD
α
t is the

Caputo derivative of order α ∈ (0, 1), defined by

CD
α
t u(t) :=

1

Γ(1− α)

∫ t

0

(t− ζ)−α∂ζu(ζ)dζ,
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where u ∈ C1([0,∞)). Recently, fractional PDEs have attracted the interest of many mathe-
maticians due to their useful features in practical models. In fact, capturing memory effects on
diffusion processes leads to the modified diffusion equation

CD
α
t u = ∆u.

We refer the reader to the following works [2,3,5,8] for beatiful results of existence and unique-
ness of mild solutions. In view of pseudo-parabolic models, time-fractional derivatives plays a
same role as in the parabolic case. The standard works on this topic are [1, 6, 7].

Another interesting point of Problem (1.1) comes from the affects of F on the solution. In
this study, we suppose that F satisfies the following Lipschitz hypotheses:∥∥∥F (u)− F (v)

∥∥∥
L2

= O
(∥∥(−∆)s(u− v)

∥∥
L2

)
, (1.2)∥∥∥F (u)

∥∥∥
L2

= O
(∥∥∥(−∆)su

∥∥∥
L2

)
, (1.3)

where s ∈ (0, 1), provided ∥(−∆)su∥L2 and ∥(−∆)sv∥L2 are finite. We note that another global
Lipschitz type of F for (1.1) was investigated in [6]. In this paper, Tuan et.al. used a weighted
norm in a Banach space to get the global existence and uniqueness of a mild solution. In this
paper, we derive the same result by another approach in which a blow-up criterion for local
solutions is provided. Then, a Grönwall type inequality helps us to get the global results. Here
we note that the local existence and uniqueness of a mild solution were proved by the Banach
fixed point theorem. Since the global existence is provided by fundamental properties of the
local solution, our approach in this work seems to be more natural than in [6]. Accordingly to
this advance, this approach can be applied further in other fractional models such as fractional
chemotaxis system, fractional Fisher equation, etc.

The paper are outlined as follows. Basic settings about function spaces and linear estimates
are provided in Secntion 2. We prove main results about global existence and uniqueness of
mild solutions in Section 3.

2 Settings

Through this work, we write A = O(B) for the inequality |A| ⩽ C|B| where C is a positive
constant whose value can change line by line. In addition, we shorten Λ := −∆.

We define Hilbert spaces via the spectral problem of Λ. More precisely, we denote by
{λk}k∈N, {ek}k∈N the set of eigenvalues and eigenvectors associated to Λ in L2(D), respectively.
Then, we define the followinf Hilbert space

Xs(D) :=
{
u ∈ L2(D)

∣∣ ∥∥Λsu
∥∥
L2 < ∞

}
.

Before moving to fractional settings, we first introduce the following notation which make
our definition more rigorous.

δj(α,A,B) :=

(
−BAα

1 +B

)j

,

where A ⩾, B > 0 and j ∈ N∪{0}. We are now ready to define the definition of mild solutions
to Problem (1.1).
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Definition 2.1 (See [6]). Let u0 ∈ L2(D). A function u is called a mild solution to Problem
(1.1) if it satisfies the following integral equality

S [u](x, t) = u(x, t) := M1(t)u0(x) +

∫ t

0

M2(t− ζ)K(u(x, ζ))dζ,

where we define for t > 0

M1(t)u :=
∞∑
k=1

∞∑
j=0

δj(α, t, λk)u

Γ(αj + 1)
ek,

M2(t)u :=
∞∑
k=1

∞∑
j=0

tα−1δj(α, t, λk)u

(1 + λk)Γ(αj + α)
ek.

Lemma 2.2 (See [6]). Let α, s ∈ (0, 1) and u ∈ X(D). Then, the following estimates hold

�

∥∥ΛsM1(t)u
∥∥
L2 = O

(∥∥Λsu
∥∥
L2

)
for any t > 0.

�

∥∥ΛsM2(t)u
∥∥
L2 = O

(
tα−1

∥∥u∥∥
L2

)
for any t > 0.

3 Existence and uniqueness

Theorem 3.1. Let u0 ∈ X(D). Then, there exists a positive constant T > 0 and a unique mild
solution to Problem (1.1) in C([0, T ];Xs(D)).

Proof. The proof begins by defining the following space for a fixed constant R = 2∥Λsu0∥L2

ET :=

{
u ∈ C ([0, T ];Xs(D))

∣∣ sup
[0,T ]

∥∥Λsu(t)
∥∥ < R

}
,

for some T > 0. We aim to show that S is a contraction mapping from ET to ET . To this
end, we present the proof via the following claims

Claim 1: S is ET invariant.
For u0 ∈ Xs(D), we get the following estimate∥∥ΛsM1(t)u0

∥∥
L2 = O

(∥∥Λsu0

∥∥
L2

)
, for any t ∈ [0, T ]. (3.1)

Let u be an arbitary element of ET . We can find the following estimate∥∥∥Λs (S [u](t)−M1(t)u0)
∥∥∥
L2

= O
(∫ t

0

∥∥∥ΛsM2(t− ζ)K(u(ζ))
∥∥∥
L2
dζ

)
= O

(∫ t

0

(t− ζ)α−1
∥∥∥K(u(ζ))

∥∥∥
L2
dζ

)
,

where we have used Lemma 2.2. By hypothesis for K, the following estimate holds∥∥∥K(u(t))
∥∥∥
L2

= O
(∥∥Λsu(t)

∥∥
L2

)
, for any t ∈ [0, T ].
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The latter two estimates then imply∥∥∥Λs (S [u](t)−M1(t)u0)
∥∥∥
L2

= O
(∫ t

0

(t− ζ)α−1
∥∥Λsu(ζ)

∥∥
L2dζ

)
= O(tα) sup

[0,T ]

∥∥Λsu(t)
∥∥
L2

= O(tα)R

Then, we can choose a sufficiently small T such that the right-hand of then above inequality is
less than R/2.

In view of all above results, one can find a positive constant T such that for any u ∈ ET ,
S [u] also belongs to ET . More precisely, there holds

sup
[0,T ]

∥∥∥ΛsS [u](t)
∥∥∥
L2

⩽ sup
[0,T ]

∥∥∥ΛsM(1)u0

∥∥∥
L2

+ sup
[0,T ]

∥∥∥Λs (S [u](t)−M1(t)u0)
∥∥∥
L2

⩽ R, for any u ∈ ET .

Claim 2: S : ET → ET is a contraction mapping.
Taking u, v ∈ ET , it is obvious that∥∥∥Λs (S [u](t)− S [v](t))

∥∥∥
L2

= O

(∫ t

0

∥∥∥ΛsM2(t− ζ) (K(u(ζ))−K(v(ζ)))
∥∥∥
L2
dζ

)
.

Then, by Lemma 2.2 we can find that∥∥∥Λs (S [u](t)− S [v](t))
∥∥∥
L2

= O

(∫ t

0

(t− ζ)α−1
∥∥∥ (K(u(ζ))−K(v(ζ)))

∥∥∥
L2
dζ

)
.

The hypothesis (1.2) yields∥∥∥Λs (S [u](t)− S [v](t))
∥∥∥
L2

= O

(∫ t

0

(t− ζ)α−1
∥∥∥Λs (u(ζ)− v(ζ))

∥∥∥
L2
dζ

)
= O(tα) sup

[0,T ]

∥∥Λs (u(t)− v(t))
∥∥
L2 .

Choosing T approriately small outputs∥∥∥Λs (S [u](t)− S [v](t))
∥∥∥
L2

= O(θ) sup
[0,T ]

∥∥Λs (u(t)− v(t))
∥∥
L2 ,

for all t ∈ [0, T ], where θ ∈ (0, 1). Consequently, one has

sup
[0,T ]

∥∥∥Λs (S [u](t)− S [v](t))
∥∥∥
L2

= O(θ) sup
[0,T ]

∥∥Λs (u(t)− v(t))
∥∥
L2 ,

this implies that S is a contraction from ET to ET .
Accordingly to the above claims, the Banach fixed point theorem can be applied to deduce

the unique existence of a mild solution to Problem (1.1), provided that ET is a complete metric
space with respect to the metric

dET
(u, v) := sup

[0,T ]

∥∥Λs (u(t)− v(t))
∥∥
L2 ,

for any u, v ∈ ET . The proof is thus completed.
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Theorem 3.2. Let u0 ∈ X(D). Then, the solution u in Theorem 3.1 exists globally in time.
Proof.
Part 1: Extension of a local mild solution.
Suppose that u is a mild solution to Problem (1.1) in C ([0, T ];Xs(D)) for some T > 0. We first
note that due to the continuity of u, one can extend u to some spaces of larger time intervals.
In fact, for a fixed constant R′ we consider the following function space

ẼT+ε,R ={
w ∈ C ([0, T + ε];Xs(D))

∣∣ w[0,T ] ≡ u and sup
[T,T+ε]

∥∥ (w(t)− u(T ))
∥∥
L2 ⩽ R

}
,

for some ε > 0. This space is a metric space with the metric generated as follows

dẼT+ε,R(w,v) := sup
[0,T+ε]

∥∥Λs (w(t)− v(t))
∥∥
L2 ,

for any w, v ∈ ẼT+ε,R. For w ∈ ẼT+ε,R, by the continuity of S [w](t) we can easily prove that

S [w] ∈ ẼT+ε,R. In addition, by similar arguments as in the previous theorem we can also verify

that S is a contraction mapping on ẼT+ε,R. Thus, the extension of u is ensured.

Part 2: Blow-up criterion.
We first define

Tmax := sup
{
T > 0

∣∣ Problem (1.1) possesses a unique mild solution u on [0, T )
}
.

We aim to show a criterion that if Tmax < ∞

lim
t→T−

max

∥∥Λsu(t)
∥∥
L2 = ∞.

Suppose by contraction that Tmax < ∞ and

lim
t→T−

max

∥∥Λsu(t)
∥∥
L2 < ∞.

Let {tl}l∈N be a subset of [0, Tmax) such that tl −→ Tmax as l → ∞. Obviously, {tl}l∈N is also a
Cauchy sequence. Then, for any ϵ > 0 there exists a constant l0 such that∣∣∣tl1 − tl2

∣∣∣ < ϵ, for all l1, l2 ⩾ l0.

In view of this observation and the continuity of u, for any ϵ > 0 we can find a sufficiently large
constant l0 such that ∥∥∥Λs (u(tl1)− u(tl2))

∥∥∥
L2

⩽ ϵ, for all l1, l2 ⩾ l0.

Therefore, one can conclude that {u(tl)}l∈N is also a Cauchy sequence. Then, the completeness
of C([0, Tmax);Xs(D)) implies the existence of a limit ũ such that

ũ := lim
l→∞

u(tl) = u(Tmax),
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by the dominated convergence theorem. This implies the determination of u at t = Tmax. By
Part 1, we can extend u to some spaces of larger time interval. This contradicts the definition
of Tmax and completes our second part.

Part 3. Applying Grönwall’s inequality. We consider the graph norm of u at any time t ∈
[0, Tmax) as follows∥∥∥Λsu(t)

∥∥∥
L2

⩽
∥∥∥ΛsM1(t)u0

∥∥∥
L2

+

∫ t

0

∥∥∥ΛsM2(t− ζ)G(u(ζ))
∥∥∥
L2
dζ.

Estimate in a same way as in Theorem 3.1, one can easily deduce∥∥∥Λsu(t)
∥∥∥
L2

⩽
∥∥∥Λsu0

∥∥∥
L2

+

∫ t

0

(t− ζ)α−1
∥∥∥Λsu(ζ)

∥∥∥
L2
dζ, for all t ∈ [0, Tmax).

Applying Grönwall’s inequality (See [4]) yields∥∥∥Λsu(t)
∥∥∥
L2

= O (M(t)) < ∞,

for all t < ∞. By Part 2, we conclude Tmax = ∞. And the proof is completed.
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