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ABSTRACT

In this paper, we consider the Dirichlet problem for a wave equation of Kirchhoff-
Carrier type with a nonlinear viscoelastic term. It consists of two main parts. In Part
1, we establish existence and uniqueness of a weak solution by applying the Faedo-
Galerkin method and the standard arguments of density corresponding to the reqularity
of initial conditions. In Part 2, we give a sufficient condition for the global existence
and exponential decay of the weak solutions by defining a modified energy functional
together with the technique of Lyapunov functional.

Keywords: Faedo-Galerkin method, Nonlinear Kirchhoff-Carrier wave equation, local
existence, global existence, exponential decay.

1 Introduction

In this paper, we consider the Dirichlet problem for a wave equation of Kirchhoff-Carrier type

as follows )

0
= Nz = = [ (s ) )2 o 1)) )
t
[ (s )P (9) ) s, )
= f(z,t,u,upuy), 0<x <1, 0<t<T,
u(0,t) = u(l,t) =0,

[ w(,0) = dp(x), w(x,0)=1a(x),

(1.1)

where A\ > 0 is given constant; uy, ps, f, tg, 4 are given functions satisfying conditions, which
will be specified later; the nonlinear terms

pn (.t (a,2) ()2 e (1)) and g (2, s, Ju(s)] s ()[?) in Eq. (1.1); depend on the
integrals

s (B)]? = / a2 (z,t) de, [ult)|? = / 2 (2, 1) d. (1.2)
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This problem has the so-called model of Kirchhoff - Carrier type because it connects Kirch-
hoff and Carrier equations. For more details, Eq. (1.1); has its origin in the nonlinear vibration
of an elastic string (Kirchhoff [4]), for which the associated equation is

Eh [F

huy = | Py 4+ —
Phug (0+2L0

ou
8_y(y’ t)

2
dy) Uz, (1.3)

where u is the lateral deflection, L is the length of the string, h is the area of the cross-section,
E is the Young modulus of the material, p is the mass density, and F is the initial tension. It
is also related to the Carrier equation. In [2], Carrier established the equation which models
vibrations of an elastic string when changes in tension are not small

L
Pl — <1 + f_jjj?) 0 u2(y, t)dy) Ugy = 07 (14)
where u(zx,t) is the x—derivative of the deformation, Ty is the tension in the rest position, F is
the Young modulus, A is the cross - section of a string, L is the length of a string and and p is
the density of a material.

The Kirchhoff-Carrier equations of the form (1.1), with various boundary conditions, have
been extensively studied by many authors. We refer the reader to, e.g., [3], [5], [7] - [19], for
many interesting results and further references.

In [3], the authors studied the existence of global solutions and exponential decay for a
Kirchhoff -Carrier model with viscosity. In [16], the author investigated on the global exis-
tence, decay properties, and blow-up of solutions to the initial boundary value problem for the
nonlinear Kirchhoff type. In [19], the viscoelastic equation of Kirchhoff type was considered and
the authors etablished a new blow-up result for arbitrary positive initial energy, by using simple
analysis techniques. In [7], Long used a linear approximation scheme to prove the existence
and uniqueness of a local solution for a Kirchhoff-Carrier type equation of the form

Ut — B(tv ||u||2 ) ||ux||2)uww = f(ZE, tvu’ Ug, Ut ||u||2 ) ||uw||2)>
ug(0,t) — hou(0,t) = uy(1,t) + hqu(l,t) =0, (1.5)
u(z,0) = tg(x), w(z,0) = 1 (x).

In addition, an asymptotic expansion of the weak solution according to a small parameter
was also considered. Results in [7] were later expanded in [9], and [17].

Triet et al. [18] investigated on the existence, decay properties, and blow-up of solutions of
the Love-Kirchhoff wave equation associated with the Dirichlet boundary conditions. Recently,
Ngoc et al. [14] demonstrated the existence and uniqueness of the solution of the boundary
problem for a Kirchhoff-Carrier equation containing nonlinear Balakrishnan-Taylor terms as
follows

e — Mtzar — p (8, (o (8), ot (6)), [[u( 1 la (8)]) g

— F (ot (8, (O, [ (D), 0 <2 <1, 0 <t < T,
u(0,t) =u(l,t) =0,
u(,0) = (), u(,0) = i (x),

(1.6)

where p, f, @i, @ are given functions, A > 0 is given constant. In case p = B(||us(t)]|?) +
o ((ugp(t),un(t))) and f = —A\u, + f(u) + F(z,t), the authors have established sufficient con-
ditions on the Balakrishnan-Taylor term o ({(u,(t), u.(t))) to obtain the exponential decay of
the solution as t — o0o.
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Motivated by the above mentioned works, because of mathematical context, we study the
unique existence and the exponential decay of the solution for Prob. (1.1). Our paper is
organized as follows.

We present preliminaries in Section 2 and establish the unique existence of a weak solution
in Section 3. In Section 4, Prob. (1.1) is considered with

p (@t u (@, 0), [Ju@)® Jua ) = m (lua®)]) (1.7)
pa (b, [u@)|” ua(9)[17) = pa (1) g(t = 9),
N
fa b, ug, uy) = —Auy — Z K [ulP " u + F(z,t)
i=1
and \y >0, K; >0,p; >2 (i =1,---, N). If some auxiliary conditions are satisfied, then the

solution decays exponentially as t — oc.
The obtained results have relatively generalized the results in [7], [8], [12], [17].

2 Preliminaries

Set Q2 = (0,1), and Q7 = Q x (0,7), T > 0. Let us denote the standard function spaces by
Ccm=Cm(Q), LP = LP(Q), H™ = H™(Q), W™? = W™P (Q) (see [1]).
We define the scalar product (-,-) in L? = L*(Q) by

1
(u,v) = / u(x)v(x)dr, u,v € L? (2.1)
0
and the corresponding norm
Jull = v/ (u, u). (2.2)
On H', we use the following norm

1/2

lll g = (ol + [fva]*) (2:3)

Then, we have the following lemma.
Lemma 2.1. (Lions [6])The imbeddings H* — C° (Q) and Hj — C°(Q) are compact and
(i) Iolloogay < V2ol Vo B, (2.4
(i) Wollomy < vl Vo € Hy,
Remark 2.2. By (2.3) and (2.4), it is easy to prove that, on Hy, the two norms v — ||[v]|;n
and v — ||vg|| are equivalent.

We denote ||-|| the norm in the Banach space X. We call X’ the dual space of X. We
denote LP(0,T; X), 1 < p < oo the Banach space of real functions u : (0,7) — X measurable,
such that

T
u(t)|5 dt < 400, 1 < p < o0,
X
0

and
AM >0 ||Ju(t)||y < M aete(0,T), p= oo,

68



Thu Dau Mot University Journal of Science - Volume 5 - Special Issue - 2023

with

T 1/p
([ uwiear) . 1<p<
= 0

|[u] ’LP(O,T;X)
esssup [u(®)lly,  p=oo,

where

esssup ||[u(t)||y =inf{M > 0: ||lu(t)||y <M aete(0,T)}.
0<t<T

Throughout this paper, we write
w(t), ug(t) = a(t), uu(t) =u(t), u.(t) = Vu(t), ugw(t) = Au(t),

to denote
ou 0%u ou 0*u

u(z,t), E(m,t), — @(x,t),

respectively.

3 Main results

3.1 Local existence and uniqueness of a weak solution

The weak fomulation of Prob. (1.1) can be given in the following manner: Find u € Wr =
{u€e L>*0,T;H*N H}) : v € L>(0,T; H* N H}) and v” € L*>(0,T; L*) N L*(0,T; H})}, such
that u satisfies the following variational equation

(" (1), v) + A (U (£), va) + (pa [u] ()ua (D), va) —/0 pa[ul(t, s) (ue(s), va) ds + (flul(t),v), (3.1)

for all v € H}, and a.e. ¢t € (0,7, together with the initial conditions
U,(O) = ’&0, UI(O) = 2~L1, (32)
where

flul(z,t) = f(x b u(z, 1), ug(z, 1), w(z, 1)), (3.3)
plul(w,t) = m (ot u (2,8) ()] lu)]7)
palu](t,5) = oo (8,5, [[uls)II |ua(s)]) -
Remark 3.1. The weak solutions have following properties
u € L0, T; H> N Hy) N C°([0,T); H* N Hy) N C*([0,TY); Hy),
u' € L0, T; H* N Hy) N C°([0,T); Hy),
u” € L>(0,T; L*) N L*(0,T; Hy).
Now, let T* > 0 be fized and we make the following assumptions
(Hy) o, G € H* N Hy;
(Hy) € C?([0,1] x [0,T%] x R x R%),
pa(z,t,y, 21, 22) > pe > 0, V(, t,y, 21, 22) € [0,1] x [0,7%] x R x R%;
(H3) p2 € CY{Ap x R2), Ape = {(t,5): 0< s <t <T*};

(Hy) feCY[0,1] x [0,T*] x R®) such that
f£(0,t,0,4,0) = f(1,t,0,4,0) =0, Y(¢t,y) € [0,T*] x R.
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For each T € (0,7%], we put
Wr={ve L>*0,T; H* N Hy) :v' € L=(0,T; H* N Hy), v" € L*(0,T; Hy)}, (3.4)
Wi(T) = {v e L*(0,T; Hy) : v' € L*(0,T; Hy) N L>(0,T; L*)}.
It is well known that Wy, Wy (T') are Banach spaces with respect to the norms (Lions [6])
||U||WT = maX{””“Lm(o,T;H?mHg) ; ||U/||L<>o(o,T;H2mH3) ; “U”HL?(O,T;H(%)}? (3.5)
||U||W1(T) = ||U||Loo(o,T;H3) + ||U/||L2(0,T;H3) + ”U/“LOO(O,T;L?) :
For each M > 0, we denote

W(M,T) ={veWr: |, <M}, (3.6)
Wi(M,T)={veW(M,T):v" € L>0,T; L*)}.

We next establish the linear recurrent sequence {u,,} as follows:
We shall choose the first term uy = 0 and suppose that

Um—1 € Wl(M, T) (37)

We find u,, € Wi(M,T) is a solution of the variational problem associating Prob. (1.1) as
follows

t

(U, (1), 0) + Aty (1), V2) + (P () Uma (1), V) = /0 fram (t, 8) (Umz(8), Ve) ds

T (F(t),v), Yo € H, (3.8)
Um(()) = ﬁ,(), u;n(()) = ’&1,
where
P (@,1) = g [um—1)(2, 1) = g (@t e (2,8), [[um1 (D)7 [ V-1 (£)]1%), (3.9)

:uQm(t7 S) - MQ[um—l] t S) = /~L2(tv S, Hum—l(S)H2 ’ Hvum—l(s)”2>7
Fn(2,t) = flum—1](z,t) = f (z,t, upmo1(2, 1), Vg1 (z,t), 1), (1)) .

Then, we have the following theorem concerning the existence and uniqueness of a weak
solution.

Theorem 3.2. Let (Hy) — (Hy) hold. Then, there exist positive constants M, T such that

(i) Prob. (1.1) has a unique weak solution v € W1 (M, T).

(ii) The linear recurrent sequence {u,,} defined by (3.7)-(3.9) converges to the solution u
strongly in the space W1(T') with the estimate

M
[tm = ullyy, () < T ka}”, for allm € N, (3.10)

where kr € [0,1) is a constant independent of m.
Proof. The proof is similar to the argument in [14], so we omit the details. O
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3.2 Exponential decay of the solution

In this section, Prob. (1.1) is considered with py = py (Hux(t)HQ) , o = o () g(t — s),
N
f (l’, t7u7ux7 ut) = _)\1ut - Z KZ |U
i=1
it means that Prob. (1.1) becomes

P20+ F(x,t),

( t
Ut — )\utz‘x — M1 (Hux(t)HQ) Uy + 2 (t) / g(t - S)sz(l', S)dS
0

N
+/\1ut+ZKi ]u|p"_2u:F(:c,t), O<az<l1,t>0, (3.11)
i=1
u(0,t) = u(l,t) =0,

L u(x,0) = ao(z), w(x,0) =ay(z),

where p; > 2, K; > 0, A > 0, Ay > 0 are given constants, and F), uy, o, g, g, %1 are given
functions satisfying conditions specified later. Here, we shall prove the exponential decay of
the weak solution of Prob. (3.11) as t — oo, i.e., there exist positive constants C, 7, such that

N
[ 7+ llue 0N+ Ju(t)|[F, < Ce™, for all £ > 0. (3.12)
=1

First, for T' > 0, we suppose that

(H)) i, @ € H? N HY;
(Hy) 1 € C'(Ry) and there exist two positive constants p., 1} such that
(i) m(z) > pe >0, V2 >0;
o () [z (2)] < pin (2), V2 20,
(fy) 2 € C1(0,T]);
(Hi) g€ CH[0,T));
(f;) FeC'(Qp)

Then, we have the following theorem.

Theorem 3.3. Letp; > 2, K; >0(i=1,--- ,N), A\ >0, Ay > 0. Suppose that (H;), (I:IQ)—(I%)
hold. Then, Prob. (3.11) has a unique solution u such that

u € L>(0,T; H*NHy), ' € L*(0,T; H*N Hy) and u" € L°(0,T; L*)N L*(0,T; Hy). (3.13)
Note that from (3.13), we deduce

uwe C0,T); H* N HY) N CY[0,T]; HY) N L>=(0,T; H> N H}Y),
u' € CU[0,T]; HY) N L>=(0,T; H*> N HY), (3.14)
u” € L>*(0,T; L) N L*0,T; HY).
If ug, w1, g and F' are less smooth as follows
(f:]l) (&0,111) - H& X LQ;
(Hy) g€ L*0,7);
<H5) Fe LQ(QT)7
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then we also obtain the existence of a weak solution (as in Theorem 3.4 below) u € Wi (T) =
fue CO(0,T]; HY) N CH(0,7]; 1) : ' € L(0,T; HY)}.
We note more that Wi (7') is a Banach space (Lions [6]) which respects to the norm

1ol () = ||U||00({0,T];H3) +lvllerqomizzy + 1V 20,7 - (3.15)

Theorem 3.4. Letp; >2, K; >0 (i=1,--- ,N), A >0, Ay > 0 and the assumptions (Hl) ,
(H,), (Hs), (Hi) , (Hs) hold. Then, Prob. (3.11) has a unique weak solution u in Wy (T).

Proof. Consider (g, @1, 9, F) € HY x L* x L? (0,T) x L? (Qr) . By using standard arguments of
density, there exists a sequence {(tiom, @im, Gm, Fm)} C C (Q) xC (Q)xC (0, T)xC= (Qr)
such that
(T, U1m) — (g, Uy) strongly in  H} x L2,
Gm — g strongly in  L2(0,T), (3.16)
F,—F strongly in  L?(Qr).

Then, for each m € N, there exists a unique function u,, under the conditions of Theorem3.3.
Thus, we can verify

([ (u (8),0) + A (U, (1), vx>+u1 (et (B)II7) Cutma (2), )

+A1 (u +ZK<|um )P g (), 0)
(3.17)

= o (t)/o G (t = 8) (U (8), v2) ds + (F(t),v) , Yo € Hy, ace., t € (0,T,,),

\ Um (0) = /&0m7 u;n (O) = ﬁlm?

and
Uy, € CO([O, Tonl; H?N H&) N Cl([(), Tonl; Hol) N L0, T,y; H?N H&),

L, € CO[0, Tl; HY) O L0, Tyn; H2 N HY), (3.18)
u? € L>(0,T,,; L?) N L*(0,T,,; HY).

A priori estimates.

We take v = u/, (t) in (3.17), we have
Sp (t) = S (0) + 2/0 (F,, (s),u. (s))ds (3.19)

I / iy (7) dr / (7 = 8) i (5), 1, (7)) ds
=5, (0)+ I + I,

where

t
Snlt) = [Jup, (B)]|* + 2>\/ 11}, (5)|* ds (3.20)
([t (£)]|?
+2)\1/ I (3)] d5+/ (=)
0

+Z2K
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Noting that, from

S (1) > . (r|u;n<t>u2+|rum<t>u2+ [ ttsrFas+ [ uu'm<s>u2ds), (3.21)

with v, = min{1, 14, 2X, 2\ } > 0, we will estimate the integrals Iy, I5 in the right hand side
of (3.19) as follows:

t t
L=2 / (Fon ()t (5)) d5 < | FnllZoopy + / S, () ds: (3.22)
0 0
t T
=2 [ s (0)dr [ gu(r = 8) (una(s). 7)) ds
0 0
t T
< 2 sl o / et ()] dr / 9m( — 9)] () | ds
2 t 1/2
< 2l gl VTV 58 [ / sm<s>ds]
1 2 2 2 * ¢
< 350+ 25 il ol 22 T [ Sua(s)is,
rY* 0

where [|pal oo = ll1all 1o,y 19l 2 = [lgmll 207 -
From (3.22) and (3.19), we deduce that

Sm(t) <28, (0) +2 HFmHiQ(QT)

2T* t
2 (1 + 22 Il ||gm||iz) [ suoyts, o<, <. (3.23)
0

*

Since

i=1

o el NOoR,
Sn(0) = lirnell? + / ez + 3 2 o
0

and from (3.16), there exists a posive constant C; which is independent of m such that

2T -
25 (0) + 2 [[E 22 gy + 2 (1 + =5 el ||gm||’;) <G, VmeN.  (324)

*

From (3.23) and (3.24), it implies that
t

Sm(t) <Oy + C’l/ Sm(s)ds, 0 <t <T, <T, YVmeN. (3.25)
0

By Gronwall’s lemma, it follows from (3.25) that
S (1) < Ch exp (Ta) — Cp, V€ [0,T]. (3.26)

Therefore, we can take T,, = T for all m € N. Now, we shall prove that {u,} is a Cauchy
sequence in C° ([0, T]; H}) nC' ([0,T]; L?) . First, we put

Wm,| = Um — U, Fm,l:Fm_Ea Im,l = Gm — 9i» (3 27)
Uom,i = Uom — Uol, Uim,] = Uim — Ui,
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and from (3.17), we deduce that

([ (wh i (1), 0) + A (W, ,vx>+u1(\|umx()H ) (VWani(t), v2)
+ o1 (lume (1)) = = (llue (@) )} <sz( ) Vx)

+A1 (w), (), 0) + ZK (Jm )P (1) = ()

pi—2 w(t),v)
(3.28)

t

— 12 (1) / Gon(t — 8) (Vevn(s), v2) ds + iz (1) / Gona(t — ) (tura(s), 02) dis

0
+ (Fnu(t),v), Yv € Hg, ae., t € (0,T),
\ Wm,i (0) = ﬁOm,la w;‘n,l (O) = alm,l-

Setting v = wy,; = u,, — u; in (3.28) and then integrating with respect to the time variable
from 0 to ¢, we have

Sy (t) = Sma ( +2/ (Frg (s),wy,, (s))ds (3.29)
—2ZK [ P ) = )P ) 5) s

2 / 1yl (S)I1?) (e (3), e (3)) [ Vet (3)] s
) / (1 (lema(8)12) = 21 (s (S)I1P)] e (5), Vo p(5)) dis

+2 [ 2 (0)dr [ antr = ) (Tumats), T () ds
+2 [ mandr [ g
S,

= mJ(O)+J1+J2+J3+J4+J5+J6,

(tr—s <ulgC Vw )> ds

where
St (t) = [ Wi ) + 11 (1t ®)]%) Ve ()] (3.30)
+2A/Otuv%<s>\fds+ml /OtHw;n’l(s)”st,
S (0) = (| (O)]* + 11 (N[iome 1) [V s (0)]
= |1 — ti]|* + g1 (|[omel|®) N[Eome — Tios]|” — 0 as m, 1 — oco.
Note that

St )2 5 (s O + Vs P + [ [F0l0] ds+ [t as)

where 7, = min{1, 14, 2,2\ } > 0, the terms J; — Js on the right-hand side of (3.29) are
estimated as follows.
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Estimate of J;. We have
t ) t
Jy = 2/ (Fog (s),wh,, (s))ds < 1 E il 2 +/ S (8)ds. (3.31)
0 0

Estimate of Jo. From (3.26) and using the following inequality

Hx|p72x - |y|p72y‘ S (p - 1)M{)_2 |Zl'f - y| ) vx??*/ S [_Mlle]a v]\4—1 > 07 VP > 2a

T
, we have

*

P () — |ua(s)

P2 y(s),wh,, (s)) ds (3.32)

Jo = —QéKi /Ot (Jum(s)
gzgm[mum<s>

N C’ Di—2 .
<23 Ko=) () [ el e )] s
i=1 *
)

N Pi
< Z K, Di
=1

P U (5) — fua(s)

()| [ wh (5)]] ds

-1 ~ t
Cr / S (8) ds.
Vs e 0

C

Estimate of Js. Setting pi* = sup{|p} ()] : 0 < 2 < VT}’ from (Hy(i7)) and the following

inequalities

St (8) = [ O] + 111 ([tma@)1F) [ Vw1
+2/\/OtHVw;%l(s)H2ds+2/\1 /OtHwinJ(s)szs
> 11 (et (1) [ V000 (1)
= Vi1 (lts (1) 11 (e (DIF) [0 (8)]°
> iy i (e (0)2) Vw0,

and

15 (et () I2) | Nt (I < /15 (et () I2) 1 (s (5)1P)] e ()
< iy mim (lume($)])
= Vi (luma(s)]2),
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we have the estimate of J3 as follows

1522 [ (a6 Gna5): ) [ Wt 5] (333
<2 [ it (e ) e )] i 190
=2 [ )1 s ()] B ¥t 5 5
< 2T [ 10y () [

__t , S (s
SN / ()] /_”ds

=2y [BE [ (591 S (5

Estimate of Jy. Using the mean value theorem of Lagrange, there exists a positive constant
0 € (0,1) such that

i ([[tma($)17) = 11 ([ (9)1%)
= [l ()I” = N ()17 4y (8 N1t (8)II” + (1 = 0) [Jura(5)%) -

Thus, we obtain that

11 (ltma ($)I17) = 11 (e ()| < 3 [l ()17 = ()1

|C
<2 VT U Vwm(s)]] -

It leads to

| Jul = ‘_2/0 I (||um(s)||2) — 1 (||Uz$(8)||2)] (we(s), Vi, (s)) ds (3.34)
< 2/0 i1 (e (3)117) = 1 (e ()P | e ()] || Vel () || ds

éT Kk ! ’
1 / IV t0ma(s)] mexs)Hds

/HVwml || ds

<57*/ INESE \
~2

C
< B (1) + 455 () / S () ds.
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Estimate of Js.
5 =2 [ a0 [l =) (Fama(s). Vot (7)) ds (3:35)
<2 sl - / IVt ()] dr / g (7 = )] [Vt (s)]| s
< 2 sl V lgnlss | [ 1900t \dﬂ [ 19 |ds]
< 2 il VT Ll 1S 012 | / St s >ds]

1 t
< Bt (1) + = 1122 T g / Syt (5) ds,
57* 0

/2

with [[p2]l o = ”M?HLOO(O,T)a gmll 2 = H9m||L2(o,T)-
Estimate of Jg.
t T
Jo = 2/ e (7) dT/ G (T — 5) (wa(s), Vo, (1)) ds (3.36)
0 0

1/2

t 1/2 t
< 2|2l oo VT || gmall 2 V va;n,l(T)H2dT:| UO IIsz(S)IIQdS}
0

Sm,l (t)} 2 @
Vx

< 2ol e VT gl [

*

2 2 2
CT||M2||Loo\/_||gmz||Lz St () < BSmi (1) + 25 Cr ka2l poe T llgmallzo -

1
(72

Choosing f = 6’ from (3.31)-(3.36), it follows from (3.29) that

t
St () < Ry (m, 1) + / Rn(5) Sy (5) ds, (3.37)
0
where
2 12 = 2 2
Ry (m, 1) = 255, (0) + 2 [[Fanll 72, ;CT 122l 70e Tl gl (3.38)
R(s) = DY 4+ DY 4 4y [P (),
M1+
N — pi—2 5
. 1 Cr 2402
D(l) =21+ Kipl T + T M**)Q 7
! ; Ve e W
oy 12
DI = 2T a3 gl -
Vx
From (3.16), we get
R . 2 12~ 2 2
7 (M, 1) =255, (0) + 2 [[Fanll2(g,. ) + ;TCT | 112] 7o |gm.all72 (3.39)

— 0, as m, | — 4o0;
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and there exists a constants f);2 )'> 0 such that
Ao _ 12 o 2« HO
DT - ’7_ ||M2||L°° T ||gm||L2 = DT , Vm e N.
From (3.38), we deduce that

t t
[ Bty < [ [D 4 DY 44 (9] s
0 0
<T(D<1>+D<m>) AT (/ ! (s)]| ds>

< TDY + 4ji \/_\/ DY ¥meN.

Using Gronwall’ lemma, and from (3.37), we obtain

1/2

Sy (t) < Ry (m, 1) exp (/Ot Rm(s)ds) (3.40)
< Ry (m, 1) exp (mg@) = DRy (m,1), ¥m,l €N, Vt € [0,T].
Combining (3.30), (3.39), (3.40), it implies that
sup [[u), () — wi()|* + sup [V (t) = V@) + [, = il 7202m (3.41)

0<t<T 0<t<T

3 .
< —Défl)RT (m,l) — 0, asm, | — +00.

*

We deduce that {u,,} is a Cauchy in Wy (T'), there exists a function u € Wy(T') such that
Uy, — u strongly in Wy (T). (3.42)

From (3.42) and using the inequality ||x|p72x - |y|p72y| < (p—1DM2|lx—y|, Yo,y €

[— M, M), VM > 0,¥p > 2, with M, = , we have
— Pi—2
. . C
Py = [l ]| oy S =D {25 | VT S e (8) = wa (8)] = 0,
T YV 0<t<T
(3.43)
S0
|t |72 gy = |u[P?u strongly in L (Qr). (3.44)
Therefore
N
Z K |t [P i P2 strongly in L (Qr) . (3.45)
i=1

On the other hand, we have

C~(T sk
sup |1 ([ltma ()11%) = 1 (Jlua(®)]*)] < 20/ 1" sup ([t () = ua (8)]| = 0.
0<t<T Ve 0<t<T
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Then, we conclude

i (lmsOI7) = 1 (Jus(OI)  strongly in €° ([0,T7). (3.4
Passing to the limit in (3.17) by (3.42), (3.45) and (3.46), we have u satisfying the problem
( d !/ /
2 (' (8, 0) + A (8), ve) + g ([l (BI) (), va)
+1 ( K; (Ju(t) [~ ),
! Z {Ju v) )

= o (zf)/0 g(t — 8) (ug(s),v,) ds + (F(t),v), Yv € Hy, a.e., t € (0,T),

u (0) = ﬂo, u’ (0) = ﬂl.

\

Theorem 3.4 is proven. O

In the following, to obtain the decay result, besides the assumptions (Hl) , (Hg) for the
functions g, @, puy as before, the assumptions for the function s, g, F' shall be added as

follows. )
(H): 1o € CU(RL);
(i) py(t) < —Copa(t) <0, VE=0;
(H*): g € L'(Ry); N
) L=p = (0) [ gls)ds >0
0
(i) ¢'(t) < —Gg(t) <0, Vi =0;
(H°) F € L*(Ry; L?) and there exist two positive constants C, 7, such that
| F (t)]] < Cie™", ¥t > 0.
Let (H,), (Hs), (H$®), (H§°), (Hg®) hold and p; > 2, K; >0 (i=1,--- ,N), A >0, \; > 0.
For T' > 0, based on Theorem 4.2, there exist a unique weak solution u of Prob. (3.11) such
that

ueWi(T) = {ueC®(0,T]; Hy) NC* ([0,T]; L?) : u' € L*(0,T; Hy)}. (3.48)
We now construct the Lyapunov functional in the form
L(t)=FE(t)+ oV (t), (3.49)

where § > 0 is chosen suitably and

oy uz (t) (g *u)(t)

B(f) =3 u @r+§}—m

IIum(t)HQ
(A pﬂ@w—mawmwAwﬁ,

V()= {u(t), v () + % e ()11 + % u ()2, (3.50)

<w@@=[ﬂhﬁ@ﬂ%%@W@
g@:Ag@w

We have the following estimate for E’ (¢)
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Lemma 3.5. For all £y > 0, we have

B (1) < Aty 01 = O = ) @) = 3 (G + G a2 (1) (g ()

2
_ %l@ (1) g(®) [l (I = 545

Proof. . Multiplying (3.11); by «' (z,t), and integrating over [0, 1], we get
g g g

B () = =M, () = A O + 5 [ () (9 % w)(0) + s (4) (6 %))
— 52 (1) 0 s ) = S () 500) s () (F (), (1)

Using the following inequality

1

1
(F ()0 (0) < 2 (I + 5 IF @), for all 2, >0,
1

py (1) (g% u)(t) < =Capa (t) (g + u)(t),
pz (8) (9" u)(t) < —Cupa (t) (g % u)(t),
by (3.52), we obtain (3.51). The lemma is proven.

We choose £€; > 0 such that 0 < % < A1. From Lemma 3.5, we deduce

1y (D1 (0) [l (DI + 5= ||F()H

1 |0z |
A o
0

Note that

£(0) =—||U1|| +Z

and

llua (8)]>
() > ( [ o= m i . <t>||2)

> 2 (e — 12 (0) 3(00)) s ()] = 5 s 1)
with §(oo) = /OO (s)ds, we have
E(t) < E(0 +_/ IF (s)||” ds + = /qu 8) [l (s)[I” ds

< B0+ g 1Pl ge) + 2050 )/qu()lE()

From Gronwall’s lemma, we get
o) [ ol as)

B0 < (EO)+ 55 1P, ) oo (i

1 1.
< (E (0) + 2, ”FH2L2(R+;L2)> exp (ZQ(OO) HUIQHLl(R_‘_)) = R

S (8) §(t) [lus (0] + 2%1 I @)I1*

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)

Consequently, the solution u(t) is expanded and defined over ¢ > 0. The following lemma states

the relation between L (t) and Ej (t), it is not difficult to prove this lemma.
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Lemma 3.6. We put

B iz (1) (9 % w)(8). (3.58)

E (1) = o' (I + lua (8)II + Z [u(?)

Then, there exist positive constants 1, B2, such that
BBy (t) < L(t) < BaEy (1), (3.59)
with 6 > 0 small enough.
We have the following estimate for W’ (¢).
Lemma 3.7. For all e9 > 0, we have

£9 3

V(1) < [l (1) - (m* — 5 ~ 5900k (0)) g (£)]1* (3.60)
- ZK l[u(t)

Proof. Multiplying (3.11); by w (z,t), and integrating over [0, 1], we get

T u2<><g*u><t>+2i€2||F<t>||2.

V(1) = o O~ (lue(OI) s (O] —ZK lu(®) 1 (3.61)

+ p (t)/o gt = s) (ua (s) , us (1)) ds + (F (), u () -

We note that

(F (1), 0 () < 2 e (O] + 2—; IF ()|, for all £ > 0, (3.62)
—pu ([lua ()7 llua (O < —pa uz ()],
[ ot =) e (9 00 (0 s < a5 00+ 5300 s 0]
Hence, we obtain (3.60) from (3.61) and (3.62). Lemma 3.7 is proven. O

Finally, we shall have the estimate for the decay of the solution as follows.

1 /1 4]
Putting p (t) = 5 (— + —) | F (¢)|]*, and from Lemma 3.5 to Lemma 3.7, we deduce that
&1 E9

() <~ L =0 (I~ 5 (G G 8) o () (g 5 )0 5ZK|ru

P (3.63)

5 (1= 2 = Sat0a 0)) = 3 Il 309) T OIF + 10,

L
for all 6, 0 < § < min{1, 5}, Ve > 0 and Vey > 0.
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We choose ¢; > 0 and €9 > 0 such that

&1 9
AM——>0 «— — > 0.
1 B y M1 5

We continue by choosing § > 0 such that

L
0< 6 <minfl, 3}, 91:)\1—%—5>0,
292:C1+C2—(5>0.

From the assumption of F, we have

1/1

5 , -
H==|—+—)F®| <Cie ™", vt >0
PO =3 (2 + 2 ) IFOIF < G, ve 20,

where C; = % (i + i) C2.

€1 E9

We can choose §(oc0) = / g(s)ds > 0 is small enough such that
0

€ 3. 1, , _
= (s = 2 = 33000 0)) = 3 Il o0) > 0.

it leads to
)
0 < g(oo) = / g(s)ds < :
0 304tz (0) + HIU/QHLOO
Then

L'(t) < =01 ! @) = Oapaa (£) (g % ) —5ZK [[u(t)

s
e

2

< _BgEl(t) + 6'167277*15 < — ( )_|_ C’ 67271* < ,VE( ) + 61167277*157

where 3 = min {6;,0s,05,0K,0K;} and 0 < 7 < min {277*, %} .

2

It gives
Cy ;
L)< |[L(0)+ — | e
(" ( ) 277*_7)
Using Lemma 3.6, and from (3.69), we obtain
1 1 C
Eit)< =L)<= | L(0)+ — et =Ce ™, WVt >0.
L) < L0 51( (0 277*_7)

Therefore, we obtain the main result in this section as follows.
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(3.66)

(3.67)

(3.68)

— Oy [|uy ()| + Cre™™!

(3.69)
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Theorem 3.8. Assume that (H,), (Hs), (H$), (H$®), and (HZ) hold and A; > 0, A > 0,
pi>2, K;>0(G=1,---,N). Let / g(s)ds > 0 be small enough, then there exists a unique

0
weak solution u of Prob. (3.11) such that u belongs to C° (Ry; Hy)NC* (Ry; L?) . Furthermore,
there exist positive constants C, 7, such that

b, < Ce M Wt > 0. (3.71)

" @1 + [z ()11 + Z [u(t)
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