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ABSTRACT

The report deals with the Robin problem for a nonlinear wave equation with viscoelastic
term. Under some suitable conditions, we establish a high-order iterative scheme and
then prove that the scheme converges to the weak solution of the original problem along
with the error estimate. This result extends the result in [9].

Keywords: Fuaedo-Galerkin method, High-order iterative scheme, Nonlinear wave
equation, Local existence.

1 Introduction

This report is devoved to study the Robin problem for a nonlinear wave equation with vis-
coelastic term as follows

t
Ut — Uy + AN, T, 1) |ut]q72 Uy + / g(t — S)uge(z,5)ds = f(x,t,u),
0
O<z<l,0<t<T, (1.1)

where ¢ > 2 is a given constant and A, f, g, g, 4y are given functions with \(x,t,u) > A, > 0.
Equation (1.1); usually arises within frameworks of mathematical models in engineering
and physical sciences. The left-hand integral of equation (1.1); is called viscoelastic term.
When Az, t,u) = a, g = 0 and f = b|u|’ > u, equation (1.1); becomes the following
nonlinear wave equation
Uy — Au A+ aug g = b ul’ " u, (1.2)

where a, b > 0 and p, ¢ > 2. This equation has been widely studied and obtained many
interesting results such as the global existence, exponential decay and finite-time blow-up of
solutions (see [1], [2], [4], [10], [12]).
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When A(z,t,u) = 1 and f = b|u|’ " u, equation (1.1); is reduced to the viscoelastic wave
equation of the form

t
Uy — Au +/ g(t — s)Au(x, s)ds + [u| "> uy = [u|’ > u, (1.3)
0

this form was considered by Messaoudi in [6], where the author proved a finite-time blow-up
result for solutions with negative initial energy if p > ¢ and a global existence result for g > p.
Laterly, Kafini and Messaoudi [3] also obtained a blow-up result of a Cauchy problem for a
nonlinear viscoelastic equation in the form (1.3) with ¢ = 2.

In this paper, we associate with equation (1.1); a recurrent sequence {u,,} defined by

(
UoEO,

t
— Aty + N, t ) [ul, |2 !, + / g(t — s)Aup(s)ds
0
N—1
19 . 1.4
2 Z—aulxtum1)(um—um_1),0<x<1,0<t<T, (1.4)
Uz (0, 1) — U (0,1) = Uz (1, ) + upm(1,6) =0,
[ Um(2,0) = uo( )y Umt(2,0) = Uy (x), m=1,2,---
If X e CH([0,1] x [0,T*] xR), Mz, t,u) > A\, >0, g€ H (0,T%), f € C°([0,1] x Ry x R)
and some other conditions, we prove that the sequence {u,,} converges at the N-order rate to
the unique weak solution of Prob. (1.1), it means that

N
[um = ully < Cllum— —ullx, (1.5)

M

for some C' > 0, where X is a suitable space. The scheme (1.4) is called the high-order iterative
scheme or the N-order iterative scheme. We note more that the high-order iterative schemes as
above were also used to obtain the existence of solutions in the previous papers, for example,
see [7], [8], 9], [11].

This paper consists of four sections. Section 2 is devoted to the presentation of preliminar-
ies. In Section 3, by using the Faedo-Galerkin approximation method and the arguments of
compactness, we prove Theorem 3.1 to get the high-order iterative scheme (1.4). Finally, in
Section 4, we prove Theorem 4.1 to obtain the convergence of the high-order iterative scheme
(1.4) and then, the unique existence of a weak solution of Prob. (1.1) follows. The result
obtained here is a generalization of the results of [9] and based on the ideas about recurrence
relations as in [7], [8], [9], [11].

2 Preliminaries

Put © = (0,1). We will omit the definitions of the usual function spaces and denote them by
the notations LP? = LP(Q), H™ = H™ (). Let (-,-) be either the scalar product in L? or the
dual pairing of a continuous linear functional and an element of a function space. The notation
||| stands for the norm in L? and ||| is the norm in the Banach space X. We call X’ the
dual space of X. We denote by LP(0,7; X), 1 < p < oo for the Banach space of real functions
u: (0,T) — X measurable, such that [[ul| 1) < +00, with

T 1/p
([ otolar) ", it 1<p<s
”uHLp(o,T;X) = 0
esssup||u(t)||x, if p=oc.
o<t<T
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We write u(t) "(t) = w(t) = u(t), u (Q = uyu(t) = U(t), u.(t) = yu(t), um(t) = Au(t), to
denote u(z,t), 34(z,1), atQ( 1), 2(z,t), & 81,2 “(z,t), respectively. With f € C*([0,1] x R} x R),
f = f(z,t,u), we put D f = ai, D,f = Dgf = af and D*f = D" D52 D55 f; a = (aq, ag,
az) €23, la| = ar +ay + a3 <k, D(Ooof DO f f

On H', we shall use the following norm

[0l = (loll® + floal?)

We also define the following bilinear form and the other norms on H*!
1
a(u,v) :/ Uy (2)vg (2)dx + u(0)v(0) + u(1)v(1), Yu,v € H', (2.1)
0

v, = Va(v,v), Vv € H', (2.2)

and
1/2

v]|, = (v2(z‘)+/01v§(a:)daz) ,i=0,1. (2.3)

On H', three norms ||v|| 4, [Jv]|, and ||v||; are equivalent norms.

We now have the following lemmas, the proofs of which are straighforward so we omit the
details.

Lemma 2.1. The imbedding H* — C°(Q) is compact and

@ Molloo@ < V20l
(i) Mvlloo@ < V2l (2.4)
(i) 5 ol < loll; < V3 vl

for allve HY, i =0,1.
Lemma 2.2. The symmetric bilinear form a(-,-) defined by (2.1) is continuous on H' x H*
and coercive on H' | i.e
() Ja(u, 0)] < 5 ull ol > for all u, v e HY,
2.5
(i) a(u,u) > = ||uHHl , for all w e H. (25)
3 Main results

3.1 A high-order iterative scheme

In this section, we shall establish a high-order iterative scheme in order to obtain the existence
of a weak solution for Prob. (1.1). Let us note here that the weak solution u of Prob. (1.1)
will be obtained in Section 4 (Theorem 4.1) in the following manner:

Find u € L>(0,T; H?) such that v’ € L>(0,T; H'), v’ € L>(0,T; L?) and u satisfies the
following variational problem and the initial conditions

(00, 0) + a8, )+ N () o (7 (1))
= / g(t — s)a(u(s),w)ds + {f (z,t,u),w), Yw € H', (3.1)

0
U(O) = ’110, 'LL/(O) = ’ljl,
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where a(-, -) is the symmetric bilinear form on H' defined by (2.1).
Let T* > 0, we make the following assumptions:

(HI) (ao,le) € H? x Hl,
(Hy) g€ H'(0,T%);
(H3) XeC'([0,1] x [0,7%] x R), and there exists a positive constant A, such that
Az, t,u) > A >0, V(z,t,u) € [0,1] x [0,7T%] x R;
(Hy)) feC°[0,1] x Ry x R) such that
(i) Dif € C°([0,1] x Ry xR), 1 <i <N,
(i) D1 Dif € C°([0,1] x Ry xR), 0<i < N —1.
Fix T* > 0. For each T' € (0,7%] and M > 0, we put

W(M,T)={veL>0,T;H? :v € L>*(0,T; H"), v" € L*(Qr),
with ||U||L°°(0,T;H2)’ ||U/||L°°(0,T;H1)7 ||U”HL2(QT) < M}, (3.2)
Wi(M,T)={veW(M,T): v eL20,T;L?)}.

Now, we construct the following recurrent sequence {u,,} :
The first term is chosen as uy = 0, suppose that

U1 € Wi(M,T), (3.3)

we find u,, € Wi(M,T) (m > 1) satisfying the nonlinear variational problem
(

(i, (1), w) + @t (t), w) + At wn (1)) 1), (D], (t), w)

t

i g(t — s)a(um(s),w)ds + (Fp(t),w), Vw € H, (3.4)
um(0) = g, u,,(0) = ay,

in which
N-1

L i
Fo(z,t) = E_O ﬂDgf(x,t,um,l) (U, — U—1)" - (3.5)
Then we have the following theorem.

Theorem 3.1. Let (Hy) — (Hy) hold. Then there exist a constant M > 0 depending on o,
and a constant T' > 0 depending on g, w1, g, f, q and \ such that, for ug = 0, there exists a
recurrent sequence {u,,} C W1(M,T') defined by (3.4)-(5.5).

Proof. The proof is based on the Faedo - Galerkin approximation method introduced by Lions
[5], the arguments of compactness, together with the same evaluation techniques as in [9]. [

3.2 Convergence and error estimate of the scheme

This section is devoted to prove the N-order convergence of the sequence {u,,} established in
Theorem 3.1 to the weak solution of Prob. (1.1). First, we denote

WA(T) = C(0.T]; H') 0 C'([0,T]; L2), (3.6)
it is clear to see that W;(T') is a Banach space with respect to the norm

HUHWI(T) = ”UHC([O,T];HI) + HU/HCO([O,T];H) : (3.7)

Then we have the following theorem.
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Theorem 3.2. Let (H,) — (Hy4) hold. Then, there exist constants M > 0 and T > 0 defined as
in Theorem 3.1 such that

(1) Prob. (1.1) has a unique weak solution w € Wy (M, T) and the sequence {u,,} defined by
(3.4)-(3.5) converges at a rate of order N to the solution u strongly in the space W1(T'), in the
sense

[t — U||W1(T) < Cllug-1 = U”%(T) ) (3.8)

for all m > 1, where C s a suitable constant.

(ii) Furthermore, the following estimate is fulfilled

1t = llyy, () < Cr (yr)™, for allm €N, (3.9)
where Cr and 0 < yp < 1 are the constants depending only on T

Proof. (i) Existence of a solution. We shall prove that {u,,} is a Cauchy sequence in Wy (7).
Indeed, we put v, = U1 — Up,. Then v, satisfies the variational problem

( (o (1), w) + a(vn(t), w)
At (0) [ O] 0 0) — i (] i (0)]
= (A s (1)) = A i ()] | (D) L, (1), w) (3.10)
+/0 9t — $)a (v(s), w) ds + (Fpir (£) — Fn(),w) , Yo € HY,
[ m(0) =1, (0) = 0.
Taking w = v/ in (3.10), after integrating in ¢, and noting that

= (M0 n(51) ([ (1 (5) = i () 0 (5)) () s <0

we get
Xm(t) < —2/0 (NS, tm1(5)) = A(s, i (5))] [t ()]l (), 0], (5))dls (3.11)
+ 2/0 g(t — 7)a (v (7), v (1)) dr — 2/0 g (0)a(vm(s),vm(s))ds
-2 i ds Osg’(s —7)a (U (T), v (8)) dT
+ 2/0 (Fry1(s) — Fp(s), v (s)) ds
= Z Ji,
k=1
with

Xon(t) = lvr O+ lom (D15 (3.12)

We denote the constants Ky (f), K (N), as follows

( N
Ky (f) = [1fllcog,y ElHDngco o) T Z ID1D5 £l coaryyy -
Illco@yy = sup  [f(z,tu)l, (3.13)

(CE,t,’lL) €Qnm

KM()\) = HD3)‘HCO(QM)7
\ QM = [07 1] X [OvT*] X [_\/§M7 \/iM]
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Next, we need to estimate the integrals on the right side of (3.11) as follows.
First, it is not difficult to estimate terms .J;, Jo, J3 and J; as follows:

B = =2 [ At 5)) = Mt (D] (5] ()., ()
< 2R WM [ o e (9l ds < KM [ X (s)as
B2 =2 [ gt = 7)o () (1)) d < 5X0®)+ 2l | Xonls)ds

=2 / 9.(0) @ (0a(3), 1(5)) ds < 2] (0)] / X, (5)ds:

Ot s t
gi==2 [ s [ g = D)a nr), v dr <2V sy [ Xns)ds
0 0 0

(3.14)

Next, using Taylor’s expansion of the function f(z,t, uy,) = f(z,t, um_1 + vy_1) around the

point u,,_q1 up to order N, we obtain

. 1 ~
f(x,t,um) _f Tyt U — 1 Z D f Tyt Up— 1) , + N'DNf(l‘,t,em)Un]\i_l,
where 0,, = ém(x,t) = Uy + O10m—1, 0 < 0 < 1.
Hence, it follows from (3.5) and (3.15) that
1
Frr(z,t) — ZZ!Dfx b U )V N'DNf(x t, 0 0N .

Therefore, we have

N-1

[Emia () = En(O)] < Kn(f )Z ‘(\/_||vm( M) + %KM(JCM@HUm—l(t)HHl)N

\/ "‘BT |V 1HW1
N
where ) = VBKy(f >Nz 1 (vam) R = %mm

It implies that
=2 [ (Fus(s) = Fals) 1 (5) ds
<9 / |Foir (5) = F(s) | 1t (5)1] ds
<2 / (B9 VX ) + 52 Tl ) V/Eon(5)ds
< 26" / ' Xo(s)ds + 26 [y / o)
<280 [ Xt + TH o 3ty + 58 [ Xl

90
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Combining (3.11), (3.14) and (3.18), we obtain

t
X (t) < 208 o [y + 59 [ Xon(s)s. (3.19)
0

where
3 - _ m 1 2
B =2 [Ka M7 + 2 (lg )] + I91Fa0.0) + VT N9 N paoirny + B2) + 8]
By using Gronwall’s lemma, (3.19) gives

N
lomllwyry < B [lom=1llw, () » (3.20)

with pr = (1 + \/3) \/QTﬁ(TQ) exp(Tﬁp}S)).
1
Choosing T' > 0 small enough such that v = Muy ' < 1, it follows from (3.20) that
s — syl oy < (1= 90) ™ () ()" for allm and p €N, (321
Hence, {u,} is a Cauchy sequence in Wy (7). Thus, there exists u € W1(T') such that
U, — u strongly in Wy(T). (3.22)
Note that u,, € W1(M,T), then there exists a subsequence {u,, } of {u,,} such that
Up; — U in  L>(0,T; H?) weakly*,
u;nj —u in  L>(0,T; H') weakly*,

Uy, — " in  L*Qr) weakly,
ue W(M,T).

(3.23)

Moreover, by (3.22) and the inequalities

sup At wm(t)) — At w(®)]| < Kar(N) [t — llyy, oy (3.24)

0<t<T

([ T P et

q—2
<=1 (V2M)" =l

Co([0,T;L?)
we have
Ayt um(t)) = A+, t,u(t)) strongly in C°([0, T ; L?), (3.25)
! |7l — WP W strongly in C°([0,T]; L?).

On the other hand

||Fm('7t) - f('atvu(t))l‘ (3.26)

<NFCt uma () = Gt w@)] +

N-1

< Kne(f) | letm—1 — U||W1(T) + Z

=1

S LDt )~ )

=1

1

il [t — um—lm/vl(T)] :
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Therefore, it implies from (3.22) and (3.25) that
F(t) = f(-,t,u(t)) strongly in C°([0,T]; L?). (3.27)

Finally, passing to limit in (3.4) and (3.5) as m = m; — oo, there exists v € W(M,T)
satisfying the equation

(W (1), w) + alu(t), w) + (At u(®) [ (1) ol (1), w) (3.28)
= [ olt = spatuls)wds + 5t u(t). ).
for all w € H' and the initial condition
w(0) = iy, W (0) = . (3.29)

On the other hand, it follows from (3.23), and (3.28) that
¢
U= Au— N, t,u) o)+ / g(t — s)Au(s)ds + f(x,t,u) € L=(0,T; L?), (3.30)
0

hence, u € Wi (M, T).
Uniqueness. Let uy, ug € Wi (M, T) be two weak solutions of Prob. (1.1). Then @ = u; —uy
satisfies the variational problem

PO (1) — (215)\"_2 uh (), w)
~ (ALt () = At ua(0)) (DI (), w) (3.31)

We take w = @/(t) in (3.31); and integrate in ¢ to get
P NTT R
p(t) = ll@ @) + la)ll; (3.32)

< -2 / (A, ur(s)) = Als, wa(s))) ()| 2 s (5) 0 (5) ) s
+ 2/0 g(t —1)a (a(r),u(t))dr — 2/0 g (0)a(u(s),u(s))ds
-2 Ot ds /0S g (s —1)a(u(r),u(s))dr (3.33)

2 / (5,01 () — Fla s, (5)), @ (s)) ds
S
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We estimate the integrals Ji,, k= 1,5 as follows.

Jy = -2 /0 <(A(s,u1(s)) — (s, un(s))) [l (8)] 72l (s) ,a'(s)> ds (3.34)

< 2Ry (N M / ()] 12 (s) | ds < Kag(A)M! / p(s)ds:

h=2 / <t—r>a<u<r>7a<t>>d7s§p<t>+2ugnig(m | otoris

/Og())aa a(s)) ds < 2|9 (0 |/

Ji——2 [ as / ¢(5 = m)a (a(r), a(s)) dr < VT |1l 0z / p(s)ds:

0

=2 / (5,1 (8)) — (5,0 (5)), €()) ds < 2VBKar(f) / p(s)ds.

We deduce from (3.32) and (3.34), that

pl0) = IO + [5O12 < kr [ pls)ds, (3.5
where
kr =2 [ RuW)M™ +2 (Ilgl320,0) + 19 O + VTl 2oy + %KMU))} .
Using Gronwall’s Lemma, it follows that p(t) = ||@(t)||* + |a(t)|> = 0, i =u; —up = 0.
Therefore, u € W1(M,T) is an unique local weak solution of Prob. (1.1).

(ii) Passing to the limit in (3.21) as p — oo for fixed m, we get (3.9).
By the similar argument, (3.8) follows. Theorem 3.2 is proved completely. ]
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