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ABSTRACT
In this paper, we consider the Dirichlet boundary problem for a nonlinear wave equation
of Kirchhoff-Carrier-Love type as follow

utt −B
(
∥u(t)∥2 , ∥ux(t)∥2

)
(uxx + uxxtt)

= f(x, t, u, ux, ut, uxt) +

p∑
i=1

εifi(x, t, u, ux, ut, uxt)

for 0 < x < 1, 0 < t < T,
u(0, t) = u(1, t) = 0,
u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x),

(1)

where ũ0, ũ1, B, f, fi (i = 1, · · · , p) are given functions, ε1, · · · , εp are small parameters

and ∥u(t)∥2 =

∫ 1

0

u2 (x, t) dx, ∥ux(t)∥2 =

∫ 1

0

u2
x (x, t) dx. First, a declaration of the

existence and uniqueness of solutions provided by the linearly approximate technique
and the Faedo-Galerkin method is presented. Then, by using Taylor’s expansion for
the functions B, f, fi, i = 1, · · · , p, up to (N + 1)th order, we establish a high-order
asymptotic expansion of solutions in the small parameters ε1, · · · , εp.
Keywords: Kirchhoff-Carrier-Love equation, Faedo-Galerkin method; Linear recur-
rent sequence; Asymptotic expansion.

1 Introduction

In this paper, we consider the following Dirichlet problem for a Kirchhoff-Carrier-Love equation

utt −B
(
∥u(t)∥2 , ∥ux(t)∥2

)
(uxx + λuxxtt) = Fε⃗ (x, t, u, ux, ut, uxt) ,

for 0 < x < 1, 0 < t < T, (1.1)

u(0, t) = u(1, t) = 0, (1.2)
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u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x), (1.3)

where ũ0, ũ1, B, f, fi (i = 1, · · · , p) are given functions and

Fε⃗ (x, t, u, ux, ut, uxt) = f(x, t, u, ux, ut, uxt) +

p∑
i=1

εifi(x, t, u, ux, ut, uxt),

ε⃗ = (ε1, · · · , εp) ∈ Rp and

∥u(t)∥2 =
∫ 1

0

u2 (x, t) dx,

∥ux(t)∥2 =
∫ 1

0

u2
x (x, t) dx.

In view of its structure, Eq. (1.1) is a very complex model. Apparently, such model equation
does not exist in the first place, so we will introduce its development and evolution to show
its background by listing several related model equations. We shall show the following model
equations not only to illustrate the corresponding physical background, but also to describe
the mathematical achievements. When Ω = (0, L), B ≡ 1, f = f1 = · · · = fp = 0, Eq. (1.1) is
become a Love-type equation as follow

utt −
E

ρ
uxx − 2µ2k2uxxtt = 0. (1.4)

Eq. (1.4) was first introduced by V. Radochová [25] to describe the vertical oscillations of
a rod, and established from Euler’s variational equation of an energy function∫ T

0

dt

∫ L

0

[
1

2
Fρ
(
u2
t + µ2k2u2

tx

)
− 1

2
F
(
Eu2

x + ρµ2k2uxuxtt

)]
dx, (1.5)

where u is the displacement, L is the length of the rod, F is the area of cross-section, k is the
cross-section radius, E is the Young modulus of the material and ρ is the mass density. By
using the Fourier method, the author obtained a classical solution of Eq. (1.4) associated with
the initial conditions (1.3) and the boundary conditions as follow

u(0, t) = u(L, t) = 0, (1.6a)

or {
u(0, t) = 0,
λuxtt(L, t) + c2ux(L, t) = 0,

(1.6b)

where c2 =
E

ρ
, λ = 2µ2k2. Further, the asymptotic behaviour of solutions for Prob (1.3), (1.4),

(1.6a) (or (1.6b)) as λ → 0+ was also established by the method of small parameters. Before
that time, there have been numerous published works of Love-type equations, we refer to some
of them as in [3], [7], [17] and references therein.

On the other hand, Love-type equations can be considered as a symmetric version of the
regularized long wave equation (a symmetric version of the regularized long wave equation)
(SRLW), see [26], was modelled by{

uxxt − ut = ρx + uux,
ρt + ux = 0,

(1.7)
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and describing weakly nonlinear ion acoustic and space - charge waves. Eliminating ρ from
(1.7), a class of SRLWE is obtained as follows

utt − uxx − uxxtt = −uuxt − uxut. (1.8)

Eq (1.8) is explicitly symmetric in the x and t derivatives, and very similar to the regularized
long wave equation that describes shallow water waves and plasma drift waves [1] and [2]. The
SRLW equations were also arised in a lot of other areas of mathematical physics, see [4], [16]
and [23]. It is clear that Eq (1.8) is a special form of Eq. (1.1) in the case fi = 0 for all
i = 1, · · · , p and f(x, t, u, ux, ut, uxt) = −uuxt − uxut.

A class of well-known equations involved in Eq (1.1) are equations of Kirchhoff type. Indeed,
when Ω = (0, L), λ = 0, B = B

(
∥ux(t)∥2

)
and Fε⃗ = 0, Eq (1.1) is related to the following

equation

ρhutt =

(
P0 +

Eh

2L

∫ L

0

∣∣∣∣∂u∂y (y, t)
∣∣∣∣2 dy

)
uxx, (1.9)

introduced by Kirchhoff [8], where u is the lateral deflection, L is the length of the string, h is the
area of the cross- section, E is the Young modulus of the material, ρ is the mass density, and P0

is the initial tension. This equation is an extension of the classical D’Alembert’s wave equation
by considering the effects of the changes in the length of the string during the vibrations. After
its appearance, a lot of of attention is devoted to studying Kirchhoff-type equations. One of early
classical studies dedicated to Kirchhoff-type equations was given by Pohozaev [24], and later
by Lions [11]. After that, Eq (1.9) has been received a lot of interest in which more abstract
models have been proposed, we refer the reader to Cavalcanti et al. [5] and [6], Larkin [9],
Medeiros [18]. In addition, the results of mathematical aspects for Kirchhoff model can be
found in Medeiros et. al. [19], [20], and the references therein.

In the light of the results mentioned above, the main purpose of this paper is devoted to
constructing a high-order asymptotic expansion of solutions in the small parameters ε1, · · · , εp
for Prob.(1.1)-(1.3). Meanwhile, in the case f ∈ C1([0, 1]×R+×R4), B ∈ C1(R2

+), the existence
and uniqueness of solutions for the problem provided by the linear approximation and the Faedo-
Galerkin method are declared by adopting the similar techniques used in [13], [22], [27] and [28].
The paper is organized as follows. In Section 2, some preliminaries are presented. In Section 3,
we state the existence and uniqueness theorem of solutions for Prob. (1.1) - (1.3). Finally, in
Section 4, we establish a high-order asymptotic expansion of the weak solution u = u(ε1, · · · , εp)
in the small parameters ε1, · · · , εp for Prob. (1.1) - (1.3) with the requirements B ∈ CN+1(R2

+),
B(y, z) ≥ b∗ > 0, for all (y, z) ∈ R2

+, f ∈ CN+1([0, 1] × R+ × R4), fi ∈ CN([0, 1] × R+ × R4),
(i = 1, · · · , p). These results can be considered a relative generalization of that given in [12]-
[15], [22] and [27].

2 Preliminaries

Put Ω = (0, 1), we use the well-known function spaces denoted by Lp = Lp(Ω), Hm = Hm (Ω) .
Let ⟨·, ·⟩ be either the scalar product in L2 or the dual pairing of a continuous linear functional
and an element of a function space. The notations ∥·∥ and ∥·∥X respectively stand for the
norm in L2 and the norm in the Banach space X. We call X ′ the dual space of X. We denote
Lp(0, T ;X), 1 ≤ p ≤ ∞ to be Banach space including real functions u : (0, T ) → X measurable,
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such that ∥u∥Lp(0,T ;X) < +∞, where

∥u∥Lp(0,T ;X) =


(∫ T

0

||u(t)||pXdt
)1/p

, for 1 ≤ p < ∞,

ess sup
0<t<T

||u(t)||X , for p = ∞.

On H1, we shall use the following norm

∥v∥H1 =
(
∥v∥2 + ∥vx∥2

)1/2
. (2.1)

We have the following lemma, whose proof is very simple so we omit the details.

Lemma 2.1. The imbedding H1 ↪→ C0(Ω) is compact and

∥v∥C0(Ω) ≤
√
2 ∥v∥H1 for all v ∈ H1. (2.2)

Remark 2.2. On H1
0 , v 7−→ ∥v∥H1 and v 7−→ ∥vx∥ are equivalent norms. Furthermore,

∥v∥C0(Ω) ≤ ∥vx∥ for all v ∈ H1
0 . (2.3)

Let u(t), u′(t) = ut(t) = u̇(t), u′′(t) = utt(t) = ü(t), ux(t) = ▽u(t), uxx(t) = ∆u(t) denote

by u(x, t),
∂u

∂t
(x, t),

∂2u

∂t2
(x, t),

∂u

∂x
(x, t),

∂2u

∂x2
(x, t), respectively.

With f ∈ CN([0, 1] × R+ × R4), f = f(x, t, u, v, w, z), we put D1f =
∂f

∂x
, D2f =

∂f

∂t
,

D3f =
∂f

∂u
, D4f =

∂f

∂v
, D5f =

∂f

∂w
, D6f =

∂f

∂z
and Dαf = Dα1

1 · · ·Dα6
6 f ; α = (α1, · · · , α6)

∈ Z6
+, |α| = α1 + · · ·+ α6 = N ; D(0,··· ,0)f = f.

Similarly, with B ∈ CN(R2
+), B = B(y, z), we put D1B =

∂B

∂y
, D2B =

∂B

∂z
and DβB =

Dβ1

1 Dβ2

2 B, β = (β1, β2) ∈ Z2
+, |β| = β1 + β2 = N ; D(0,0)B = B.

Moreover, here Prob. (1.1)-(1.3) will be denoted by (Pε⃗), where ε⃗ = (ε1, · · · , εp) and (P0)
respect with ε⃗ = (ε1, · · · , εp) = (0, · · · , 0).

3 Main results

3.1 The existence and uniqueness theorem

In order to establish the existence and uniqueness theorem, we make the following assumptions:
(H1) ũ0, ũ1 ∈ H1

0 ∩H2;

(H2) B ∈ C1(R2
+) and ∃ b∗ > 0 such that B(y, z) ≥ b∗, ∀(y, z) ∈ R2

+;

(H3) f ∈ C1(Ω× R+ × R4)
and f(0, t, 0, v, 0, z) = f(1, t, 0, v, 0, z) = 0, ∀(t, v, z) ∈ R+ × R2.

The weak solution of Prob (1.1)-(1.3) is a function u ∈ W̃T , W̃T = {v ∈ L∞ (0, T ;H1
0 ∩H2) :

v′, v′′ ∈ L∞ (0, T ;H1
0 ∩H2)}, such that u satisfies the follwing linear variational problem

⟨u′′(t), w⟩+B[u](t)⟨ux(t) + u′′
x(t), wx⟩ = ⟨f [u](t), w⟩ , (3.1)
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for all w ∈ H1
0 , a.e., t ∈ (0, T ), together with initial conditions

u(0) = ũ0, u′(0) = ũ1, (3.2)

in which

B[u](t) = B
(
∥u(t)∥2 , ∥ux(t)∥2

)
, (3.3)

f [u](x, t) = f (x, t, u(x, t), ux(x, t), u
′(x, t), u′

x(x, t)) .

Consider T ∗ > 0 fixed, for all T ∈ (0, T ∗], we put

WT = {v ∈ L∞(0, T ;H1
0 ∩H2) : vt ∈ L∞(0, T ;H1

0 ∩H2), vtt ∈ L∞(0, T ;H1
0 )} (3.4)

is a Banach space with respect to the norm (see Lions [10])

∥v∥WT
= max{∥v∥L∞(0,T ;H1

0∩H2) , ∥v′∥L∞(0,T ;H1
0∩H2) , ∥v′′∥L∞(0,T ;H1

0 )
}. (3.5)

For all M > 0, we put

W1(M,T ) = {v ∈ WT : ∥v∥WT
≤ M and v′′ ∈ L∞(0, T ;H1

0 ∩H2)}. (3.6)

Then we have the following theorem.

Theorem 3.1. Let (H1)− (H3) hold. Then, there exist positive constants M and T such that
the problem (P0) has a unique weak solution u0 ∈ W1(M,T ).

Proof. The proof of Theorem 3.1 is based on the Faedo-Galerkin approximation method (see
Lions [10]) together with some similar estimates in [27] and [28].

3.2 Asymptotic expansion of solutions in small parameters

In this section, we suppose that the assumptions (H1) − (H3) are hold. Then, in order to
establish an asymptotic expansion of solutions in small parameters for Prob. (1.1)-(1.3), we
need an additional assumption as follow

(H4) fi ∈ C1([0, 1]× R+ × R4), and fi(0, t, 0, v, 0, z) = fi(1, t, 0, v, 0, z) = 0,

∀(t, v, z) ∈ R+ × R2, (i = 1, · · · , p).
Consider T ∗ > 0 fixed and let M > 0, we put

K̃M(B) = ∥B∥C1([0,M2]×[0,M2]) , KM(f) = ∥f∥C1(AM ) ,

where AM = {(x, t, u, v, w, z) ∈ [0, 1]× [0, T ∗]× R4 : |u| , |v| , |w| , |z| ≤ M}.
We consider the problem (Pε⃗) depending on p small parameters ε1, · · · , εp, with |εi| < 1,

i = 1, · · · , p :

(Pε⃗)



utt −B(∥u∥2 , ∥ux∥2)Au = Fε⃗(x, t, u, ux, ut, uxt), 0 < x < 1, 0 < t < T,

u(0, t) = u(1, t) = 0,

u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x),

Au = uxx + uxxtt,

Fε⃗(x, t, u, ux, ut, uxt) = f(x, t, u, ux, ut, uxt) +

p∑
i=1

εifi(x, t, u, ux, ut, uxt).
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Under the assumptions (H1) − (H4) and by the results of Theorem 3.1, the problem (Pε⃗)
has a unique weak solution u depending on ε⃗ = (ε1, · · · , εp), namely uε⃗ = u (ε1, · · · , εp) .
Furthermore, by the fact that |εi| < 1, i = 1, · · · , p, then the solution uε⃗ satisfies

uε⃗ ∈ W1(M,T ), for all ε⃗, ∥ε⃗∥ < 1,

where positive constants M, T independent on ε⃗ = (ε1, · · · , εp) are similarly chosen as in
Theorem 3.1.

Next, we shall study asymptotic expansion of the solution of (P−→ε ) with respect to the small
parameters ε1, · · · , εp.

We use the following notations. For a multi-index α = (α1, · · · , αp) ∈ Zp
+, and

−→ε =
(ε1, · · · , εp) ∈ Rp, we put

|α| = α1 + · · ·+ αp, α! = α1! · · ·!αp!,

∥ε⃗∥ =
√

ε21 + · · ·+ ε2p, ε⃗α = εα1
1 · · · εαp

p ,

α, β ∈ Zp
+, α ≤ β ⇐⇒ αi ≤ βi ∀i = 1, · · · , p.

(3.7)

Then, we have the following lemma.

Lemma 3.2. Let m, N ∈ N and uα ∈ R, α ∈ Zp
+, 1 ≤ |α| ≤ N. Then ∑

1≤|α|≤N

uαε⃗
α

m

=
∑

m≤|α|≤mN

T
(m)
N [u]αε⃗

α, (3.8)

where the coefficients T
(m)
N [u]α, m ≤ |α| ≤ mN depending on u = (uα), α ∈ Zp

+, 1 ≤ |α| ≤ N
defined by the recurrence formulas

T
(1)
N [u]α = uα, 1 ≤ |α| ≤ N,

T
(m)
N [u]α =

∑
β∈A(m)

α (N)

uα−βT
(m−1)
N [u]β, m ≤ |α| ≤ mN, m ≥ 2,

A
(m)
α (N) = {β ∈ Zp

+ : β ≤ α, 1 ≤ |α− β| ≤ N, m− 1 ≤ |β| ≤ (m− 1)N}.

(3.9)

The proof of Lemma 3.2 can be found in [15].
Now, we assume that
(H5) B ∈ CN+1(R2

+),

B(y, z) ≥ b∗ > 0, for all (y, z) ∈ R2
+, (i = 1, · · · , p),

(H6) f ∈ CN+1([0, 1]× R+ × R4), fi ∈ CN([0, 1]× R+ × R4),

and f(0, t, 0, v, 0, z) = f(1, t, 0, v, 0, z) = fi(0, t, 0, v, 0, z) = fi(1, t, 0, v, 0, z) = 0,

for all (t, v, z) ∈ R+ × R2, (i = 1, · · · , p).
Note that u0 is a unique weak solution of (P0) (as in Theorem 3.1) defined by

(P0)


u′′
0 −B[u0]Au0 = f [u0], 0 < x < 1, 0 < t < T,

u0(0, t) = u0(1, t) = 0,

u0(x, 0) = ũ0(x), u
′
0(x, 0) = ũ1(x),

u0 ∈ W1(M,T ).
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Considering the sequence of weak solutions uν , ν ∈ Zp
+, 1 ≤ |ν| ≤ N, of the following

problems

(P̃ν)


u′′
ν −B[u0]Auν = Fν , 0 < x < 1, 0 < t < T,

uν(0, t) = uν(1, t) = 0,

uν(x, 0) = u′
ν(x, 0) = 0,

uν ∈ W1(M,T ),

where Fν , ν ∈ Zp
+, 1 ≤ |ν| ≤ N, are defined by the recurrence formulas

Fν =


f [u0] ≡ f(x, t, u0,∇u0, u

′
0,∇u′

0), |ν| = 0,

πν [f ] +

p∑
i=1

π(i)
ν [fi] +

∑
1≤|α|≤N,
|ν−α|≤N

ρα[B]Auν−α, 1 ≤ |ν| ≤ N, (3.10)

and ρν [B] = ρν [B;σ(1), σ(2)], πν [f ] = πν [f ; {uγ}γ≤ν ], π
(i)
ν [f ] = π

(i)
ν [f ; {uγ}γ≤ν ], |ν| ≤ N, are

defined as follow.

A/ The fomula ρν [B] = ρν [B, σ(1), σ(2)]:

ρν [B] = ρν [B, σ(1), σ(2)] (3.11)

=


B[u0], |ν| = 0,∑
|γ|≤|ν|

1

γ!
DγB[u0]

∑
γ1≤|α|≤2γ1N,

γ2≤|ν−α|≤2γ2N

T
(γ1)
2N [σ(1)]αT

(γ2)
2N [σ(2)]ν−α, 1 ≤ |ν| ≤ N,

where σ(1) =
(
σ
(1)
α

)
, σ(2) =

(
σ
(2)
α

)
, α ∈ Zp

+, 1 ≤ |α| ≤ 2N, are defined by

σ(1)
α =



2⟨u0, uα⟩, |α| = 1,

2⟨u0, uα⟩+
∑
β≤α

⟨uβ, uα−β⟩, 2 ≤ |α| ≤ N,∑
β≤α

⟨uβ, uα−β⟩, N + 1 ≤ |α| ≤ 2N,

(3.12)

σ(2)
α =



2⟨∇u0,∇uα⟩, |α| = 1,

2⟨∇u0,∇uα⟩+
∑
β≤α

⟨∇uβ,∇uα−β⟩, 2 ≤ |α| ≤ N,∑
β≤α

⟨∇uβ,∇uα−β⟩, N + 1 ≤ |α| ≤ 2N,

B/ The fomula πν [f ] = πν [f ; {uγ}γ≤ν ]:

πν [f ] =



f [u0], |ν| = 0,∑
1≤|m|≤|ν|

m=(m1,··· ,m4)∈Z4
+

1

m!
Dmf [u0]

∑
(α,β,γ,δ)∈A(m,N)

α+β+γ+δ=ν

T
(m1)
N [u]α

×T
(m2)
N [∇u]βT

(m3)
N [u′]γT

(m4)
N [∇u′]δ, 1 ≤ |ν| ≤ N,

(3.13)
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wherem = (m1, · · · ,m4) ∈ Z4
+, |m| = m1+· · ·+m4, m! = m1! · · ·!m4!, D

mf = Dm1
3 Dm2

4 Dm3
5 Dm4

6 f,

A(m,N) = {(α, β, γ, δ) ∈ (Zp
+)

4 : m1 ≤ |α| ≤ m1N, m2 ≤ |β| ≤ m2N, m3 ≤ |γ| ≤ m3N,
m4 ≤ |δ| ≤ m4N},

π
(i)
ν [f ] = πν(i−) [f ] = πν1,··· ,νi−1,νi−1,νi+1,··· ,νp [f ], i = 1, · · · , p,

π
(i)
ν [f ] = πν1,··· ,νi−1,−1,νi+1,··· ,νp [f ] = 0, if νi = 0,

ν = (ν1, · · · , νp) ∈ Zp
+, ν

(i−) = (ν1, · · · , νi−1, νi − 1, νi+1, · · · , νp).
(3.14)

Then, we have the following lemma.

Lemma 3.3. Let ρν [B] = ρν [B, σ(1), σ(2)], πν [f ], |ν| ≤ N, be the functions defined by the

formulas (3.11) and (3.13). Put h =
∑
|γ|≤N

uγ ε⃗
γ, then we have

(i) B[h] =
∑
|ν|≤N

ρν [B]ε⃗ν + ∥ε⃗∥N+1 R̃
(1)
N [B, ε⃗], (3.15)

(ii) f [h] =
∑
|ν|≤N

πν [f ]ε⃗
ν + ∥ε⃗∥N+1 R̄

(1)
N [f, ε⃗], (3.16)

with
∥∥∥R̃(1)

N [B, ε⃗]
∥∥∥
L∞(0,T )

+
∥∥∥R̄(1)

N [f, ε⃗]
∥∥∥
L∞(0,T ;L2)

≤ C, where C is a constant depending only on

N, T, f, B, uγ, |γ| ≤ N.

Proof. (i) In the case of N = 1, the proof of (3.15) is easy, hence we omit the details. We only

prove it with N ≥ 2. Put h = u0 +
∑

1≤|α|≤N

uαε⃗
α ≡ u0 + h1, we rewrite B[h] as below

B[h] = B(∥u0 + h1∥2 , ∥∇u0 +∇h1∥2) = B(∥u0∥2 + ξ1, ∥∇u0∥2 + ξ2), (3.17)

where ξ1 = ∥u0 + h1∥2 − ∥u0∥2 , ξ2 = ∥∇u0 +∇h1∥2 − ∥∇u0∥2 .
By using Taylor’s expansion of the function B(∥u0∥2 + ξ1, ∥∇u0∥2 + ξ2) around the point

(∥u0∥2 , ∥∇u0∥2) up to order N + 1, we obtain

B[h] = B(∥u0∥2 + ξ1, ∥∇u0∥2 + ξ2) (3.18)

= B(∥u0∥2 , ∥∇u0∥2) +
∑

1≤|γ|≤N

1

γ!
DγB(∥u0∥2 , ∥∇u0∥2)ξγ11 ξγ22 +RN [B, u0, ξ1, ξ2]

= B[u0] +
∑

1≤|γ|≤N

1

γ!
DγB[u0]ξ

γ1
1 ξγ22 +RN [B, u0, ξ1, ξ2],

where

RN [B, u0, ξ1, ξ2] =
∑

|γ|=N+1

N + 1

γ!

∫ 1

0

(1− θ)NDγB(∥u0∥2 + θξ1, ∥∇u0∥2 + θξ2)ξ
γ1
1 ξγ22 dθ (3.19)

≡ ∥ε⃗∥N+1R
(1)
N [B, u0, ξ1, ξ2].

On the other hand, we have

ξ1 = ∥u0 + h1∥2 − ∥u0∥2 = 2⟨u0, h1⟩+ ∥h1∥2 ≡
∑

1≤|α|≤2N

σ(1)
α ε⃗α, (3.20)
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with σ
(1)
α , 1 ≤ |α| ≤ 2N are defined by (3.12)1.

By the formula (3.8), it follows from (3.20) that

ξγ11 =

 ∑
1≤|α|≤2N

σ(1)
α ε⃗α

γ1

=
∑

γ1≤|α|≤2γ1N

T
(γ1)
2N [σ(1)]αε⃗

α, (3.21)

where σ(1) = (σ
(1)
α ), α ∈ Zp

+, 1 ≤ |α| ≤ 2N.
Similarly, we have

ξγ22 =

 ∑
1≤|α|≤2N

σ(2)
α ε⃗α

γ2

=
∑

γ2≤|α|≤2γ2N

T
(γ2)
2N [σ(2)]αε⃗

α, (3.22)

where σ(2) = (σ
(2)
α ), α ∈ Zp

+, 1 ≤ |α| ≤ 2N, is defined by (3.12)2.
Therefore, it follows from (3.21) and (3.22) that

ξγ11 ξγ22 =
∑

|γ|≤|ν|≤2|γ|N

 ∑
γ1≤|α|≤2γ1N,

γ2≤|ν−α|≤2γ2N

T
(γ1)
2N [σ(1)]αT

(γ2)
2N [σ(2)]ν−α

 ε⃗ν (3.23)

=
∑

|γ|≤|ν|≤2|γ|N

Φν [N, σ(1), σ(2), γ1, γ2, α]ε⃗
ν =

∑
|γ|≤|ν|≤N

Φν [N, σ(1), σ(2), γ1, γ2, α]ε⃗
ν +

∑
N+1≤|ν|≤2|γ|N

Φν [N, σ(1), σ(2), γ1, γ2, α]ε⃗
ν

=
∑

|γ|≤|ν|≤N

Φν [N, σ(1), σ(2), γ1, γ2, α]ε⃗
ν + ∥ε⃗∥N+1RN [N, σ(1), σ(2), γ1, γ2, α, ε⃗],

where
Φν [N, σ(1), σ(2), γ1, γ2, α] =

∑
γ1≤|α|≤2γ1N,

γ2≤|ν−α|≤2γ2N

T
(γ1)
2N [σ(1)]αT

(γ2)
2N [σ(2)]ν−α,

∥ε⃗∥N+1RN [N, σ(1), σ(2), γ1, γ2, α, ε⃗] =
∑

N+1≤|ν|≤2|γ|N

Φν [N, σ(1), σ(2), γ1, γ2, α]ε⃗
ν .

(3.24)

Hence, we deduce from (3.18), (3.23) and (3.24) that

B[h] =
∑
|ν|≤N

ρν [B, σ(1), σ(2)]ε⃗ν + ∥ε⃗∥N+1 R̂
(1)
N [B, u0, σ

(1), σ(2), ξ1, ξ2], (3.25)

where ρν [B] = ρν [B;σ(1), σ(2)], ν ∈ Zp
+, |ν| ≤ N, is defined by (3.11) and

R̂
(1)
N [B, u0, σ

(1), σ(2), ξ1, ξ2] =
∑

1≤|γ|≤N

1

γ!
DγB[u0]RN [N, σ(1), σ(2), γ1, γ2, α, ε⃗]

+R
(1)
N [B, u0, ξ1, ξ2]. (3.26)
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By the boundedness of the functions uγ, u
′
γ, |γ| ≤ N in the function space L∞(0, T ;H1

0∩H2),
we obtain from (3.19), (3.24) and (3.26) that∥∥∥R̂(1)

N [B, u0, σ
(1), σ(2), ξ1, ξ2]

∥∥∥
L∞(0,T )

≤ C, where C is a constant only depending on N, T, B,

∥uγ∥L∞(0,T ;L2) , ∥∇uγ∥L∞(0,T ;L2) , |γ| ≤ N. Hence, the formula (i) of Lemma 3.4 is proved.

(ii) We only prove (3.16) with N ≥ 2. By using Taylor’s expansion of the function f [u0+h1]
around the point u0 up to order N + 1, we obtain from (3.8) that

f [u0 + h1] = f [u0] +D3f [u0]h1 +D4f [u0]∇h1 +D5f [u0]h
′
1 +D6f [u0]∇h′

1 (3.27)

+
∑

2≤|m|≤N
m=(m1,··· ,m4)∈Z4

+

1

m!
Dmf [u0]h

m1
1 (∇h1)

m2 (h′
1)

m3 (∇h′
1)

m4 +R
(1)
N [f, h1]

= f [u0] +D3f [u0]h1 +D4f [u0]∇h1 +D5f [u0]h
′
1 +D6f [u0]∇h′

1

+
∑

2≤|m|≤N
m∈Z4

+

1

m!
Dmf [u0]

∑
|m|≤|ν|≤N

Φ̃ν [m,N, f, u,∇u, u′,∇u′]ε⃗ν

+
∑

2≤|m|≤N
m∈Z4

+

1

m!
Dmf [u0]

∑
N+1≤|ν|≤|m|N

Φ̃ν [m,N, f, u,∇u, u′,∇u′]ε⃗ν+

R
(1)
N [f, h1],

where

R
(1)
N [f, h1] =

=
∑

|m|=N+1
m=(m1,··· ,m4)∈Z4

+

N + 1

m!

∫ 1

0

(1− θ)NDmf [u0 + θh1]h
m1
1 (∇h1)

m2 (h′
1)

m3 (∇h′
1)

m4 dθ,

Φ̃ν [m,N, f, u,∇u, u′,∇u′] (3.28)

=
∑

(α,β,γ,δ)∈A(m,N)
α+β+γ+δ=ν

T
(m1)
N [u]αT

(m2)
N [∇u]βT

(m3)
N [u′]γT

(m4)
N [∇u′]δ, |m| ≤ |ν| ≤ |m|N.

Note that

f [u0] +D3f [u0]h1 +D4f [u0]∇h1 +D5f [u0]h
′
1 +D6f [u0]∇h′

1 (3.29)

+
∑

2≤|m|≤N
m∈Z4

+

1

m!
Dmf [u0]

∑
|m|≤|ν|≤N

Φ̃ν [m,N, f, u,∇u, u′,∇u′]ε⃗ν

=
∑
|ν|≤N

πν [f ]ε⃗
ν ,

where πν [f ], 1 ≤ |ν| ≤ N is defined by (3.13).
Similarly,∑

2≤|m|≤N
m∈Z4

+

1

m!
Dmf [u0]

∑
N+1≤|ν|≤|m|N

Φ̃ν [m,N, f, u,∇u, u′,∇u′]ε⃗ν +R
(1)
N [f, h1]

= ∥ε⃗∥N+1 R̄
(1)
N [f, ε⃗], (3.30)
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with
∥∥∥R̄(1)

N [f, ε⃗]
∥∥∥
L∞(0,T ;L2)

≤ C, C is a constant only depending on N, T, f, uγ, |γ| ≤ N. Then

(3.16) hold. Lemma 3.3 is proved.

Remark 3.4. Lemma 3.4 is a generalization of a formula given in [13] (p.262, formula (4.38))
and it is useful to obtain Lemma 3.5 below. Lemmas 3.4 and 3.5 are the keys to establish
the (N + 1)th-order asymptotic expansion of the weak solution u = u (ε1, · · · , εp) in the small
parameters ε1, · · · , εp, which will be presented below.

Let uε⃗ = u (ε1, · · · , εp) ∈ W1(M,T ) be a unique weak solution of the problem (Pε⃗). Then

v = uε⃗ −
∑
|γ|≤N

uγ ε⃗
γ ≡ uε⃗ − h satisfies the problem



v′′ −B[v + h]Av = Fε⃗[v + h]− Fε⃗[h] + (B[v + h]−B[h])Ah

+Eε⃗(x, t), 0 < x < 1, 0 < t < T,
v(0, t) = v(1, t) = 0,
v(x, 0) = v′(x, 0) = 0,
Av = ∆v +∆v′′,

B[v] = B(∥v∥2 , ∥vx∥2),

Fε⃗[v] = f [v] +

p∑
i=1

εifi[v] = f(x, t, v, vx, v
′, v′x) +

p∑
i=1

εifi(x, t, v, vx, v
′, v′x),

(3.31)

where

Eε⃗(x, t) = f [h]− f [u0] +

p∑
i=1

εifi[h] + (B[h]−B[u0])Ah−
∑

1≤|ν|≤N

Fν ε⃗
ν . (3.32)

Then, we have the following lemma

Lemma 3.5. Let (H1), (H5) and (H6) hold. Then there exists a constant C̄∗ such that

∥Eε⃗∥L∞(0,T ;L2) ≤ C̄∗ ∥ε⃗∥N+1 , (3.33)

where C̄∗ is a constant depending only on N, T, f, fi, B, uγ, |γ| ≤ N, 1 ≤ i ≤ p.

Proof. In the case of N = 1, the proof of Lemma 3.5 is easy, hence we omit the details. We
only consider the case N ≥ 2.

By using the formulas (3.15) and (3.16) for the functions B[h] and fi[h], we obtain
B[h] =

∑
|ν|≤N−1

ρν [B]ε⃗ν + ∥ε⃗∥N R̃
(1)
N−1[B, ε⃗],

fi[h] =
∑

|ν|≤N−1

πν [fi]ε⃗
ν + ∥ε⃗∥N R̄

(1)
N−1[fi, ε⃗], 1 ≤ i ≤ p.

(3.34)

By (3.14) and (3.34)2, we rewrite εifi[h], 1 ≤ i ≤ p, as follows

εifi[h] =
∑

|ν|≤N−1

πν [fi]εiε⃗
ν + εi ∥ε⃗∥N R̄

(1)
N−1[fi, ε⃗] (3.35)

=
∑

1≤|ν|≤N, νi≥1

πν1,ν2,··· ,νi−1,νi−1,νi+1,··· ,νp [fi]ε⃗
ν + εi ∥ε⃗∥N R̄

(1)
N−1[fi, ε⃗]

=
∑

1≤|ν|≤N

π(i)
ν [fi]ε⃗

ν + εi ∥ε⃗∥N R̄
(1)
N−1[fi, ε⃗].
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we deduce from (3.16) and (3.35) that

f [h]− f [u0] +

p∑
i=1

εifi[h] (3.36)

=
∑

1≤|ν|≤N

[
πν [f ] +

p∑
i=1

π(i)
ν [fi]

]
ε⃗ν + ∥ε⃗∥N+1 R̄

(1)
N [f, f1, · · · , fp, ε⃗],

where R̄
(1)
N [f, f1, · · · , fp, ε⃗] = R̄

(1)
N [f, ε⃗] +

p∑
i=1

εi
∥ε⃗∥

R̄
(1)
N−1[fi, ε⃗] is bounded in L∞(0, T ;L2) by a

constant only depending on N, T, f, fi, uγ, |γ| ≤ N, 1 ≤ i ≤ p.

On the other hand, we deduce from (3.15) that

(B[h]−B[u0])Ah (3.37)

=
∑

1≤|ν|≤2N

∑
1≤|α|≤N,
|ν−α|≤N

(ρα[B])Auν−αε⃗
ν + ∥ε⃗∥N+1 R̃

(1)
N [B, ε⃗],

where

R̃
(1)
N [B, ε⃗] = R̃

(1)
N [B, ε⃗]Ah. (3.38)

We decompose the sum
∑

1≤|ν|≤2N

into the addition of two sums
∑

1≤|ν|≤N

and
∑

N+1≤|ν|≤2N

. Hence,

we rewritte (3.36) as below

(B[h]−B[u0])Ah =
∑

1≤|ν|≤N

∑
1≤|α|≤N,
|ν−α|≤N

(ρα[B])Auν−αε⃗
ν + ∥ε⃗∥N+1 R̃

(2)
N [B, ε⃗], (3.39)

where

∥ε⃗∥N+1 R̃
(2)
N [B, ε⃗] = ∥ε⃗∥N+1 R̃

(1)
N [B, ε⃗] (3.40)

+
∑

N+1≤|ν|≤2N

∑
1≤|α|≤N,
|ν−α|≤N

(ρα[B])Auν−αε⃗
ν .

Combining (3.10), (3.11), (3.13), (3.32), (3.36) and (3.39), then we obtain

Eε⃗ = ∥ε⃗∥N+1
[
R̄

(1)
N [f, f1, · · · , fp, ε⃗] + R̃

(2)
N [B, ε⃗]

]
. (3.41)

By the functions uν ∈ W1(M,T ), |ν| ≤ N, we obtain from (3.36) and (3.40) that

∥Eε⃗∥L∞(0,T ;L2) = ∥ε⃗∥N+1
∥∥∥R̄(1)

N [f, f1, · · · , fp, ε⃗] + R̃
(2)
N [B, ε⃗]

∥∥∥
L∞(0,T ;L2)

≤ C̄∗ ∥ε⃗∥N+1 , (3.42)

where C̄∗ is a constant depending only on N, T, f, fi, B, uγ, |γ| ≤ N, 1 ≤ i ≤ p. The proof of
Lemma 3.5 is complete.
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Now, we consider the sequence of functions {vm} defined by
v0 ≡ 0,
v′′m −B[vm−1 + h]Avm = Fε⃗[vm−1 + h]− Fε⃗[h] + (B[vm−1 + h]−B[h])Ah

+Eε⃗(x, t), 0 < x < 1, 0 < t < T,
vm(0, t) = vm(1, t) = 0,
vm(x, 0) = v′m(x, 0) = 0, m ≥ 1.

(3.43)

With m = 1, we have the problem
v′′1 −B[h]Av1 = Eε⃗(x, t), 0 < x < 1, 0 < t < T,

v1(0, t) = v1(1, t) = 0,
v1(x, 0) = v′1(x, 0) = 0.

(3.44)

By multiplying two sides of (3.44) by v′1, we verify without difficulty from (3.33) that

||v′1(t)||2 + B̄1(t)
(
∥v1x(t)∥2 + ∥v′1x(t)∥

2
)

(3.45)

=

∫ t

0

B̄′
1(s)

(
∥v1x(s)∥2 + ∥v′1x(s)∥

2
)
ds+ 2

∫ t

0

⟨Eε⃗(s), v
′
1(s)⟩ds

≤ TC̄2
∗ ∥ε⃗∥

2N+2 +

∫ t

0

∥v′1(s)∥
2
ds+

∫ t

0

∣∣B̄′
1(s)

∣∣ (∥v1x(s)∥2 + ∥v′1x(s)∥
2
)
ds,

where B̄1(t) = B[h](t) = B(∥h(t)∥2 , ∥∇h(t)∥2).
By

B̄′
1(t) = 2D1B[h]⟨h(t), h′(t)⟩+ 2D2B[h]⟨∇h(t),∇h′(t)⟩, (3.46)

we have ∣∣B̄′
1(t)
∣∣ ≤ 4M2

∗ K̃M∗(B) ≡ ζ1, for all ∥−→ε ∥ < 1, (3.47)

with M∗ = N1M, and N1 = card{γ ∈ Zp
+ : |γ| ≤ N}. It follows from (3.45), (3.47) that

||v′1(t)||2 + b∗

(
∥v1x(t)∥2 + ∥v′1x(t)∥

2
)

(3.48)

≤ TC̄2
∗ ∥ε⃗∥

2N+2 + (1 + ζ1)

∫ t

0

(
∥v1x(s)∥2 + ∥v′1x(s)∥

2
)
ds.

By Gronwall’s lemma, we obtain from (3.48) that

∥v1x(t)∥2 + ∥v′1x(t)∥
2 ≤ 1

b∗
TC̄2

∗ ∥ε⃗∥
2N+2 exp [(1 + ζ1)T ] . (3.49)

Hence

||v1||C1([0,T ];H1
0 )
≤ 2√

b∗

√
TC̄∗ ∥ε⃗∥N+1 exp

[
1

2
(1 + ζ1)T

]
. (3.50)

We shall prove that there exists a constant CT independent of m and ε⃗,such that

∥vm∥C1([0,T ];H1
0 )
≤ CT ∥ε⃗∥N+1 , with ∥ε⃗∥ < 1, for all m. (3.51)
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By multiplying two sides of (3.43) with v′m and after integrating in t, we obtain from (3.33)
that

||v′m(t)||2 + B̄m(t)
(
∥vmx(t)∥2 + ∥v′mx(t)∥

2
)

(3.52)

≤ TC̄2
∗ ∥ε⃗∥

2N+2 +

∫ t

0

∥v′m(s)∥
2
ds+

∫ t

0

B̄′
m(s)

(
∥vmx(s)∥2 + ∥v′mx(s)∥

2
)
ds

+ 2

∫ t

0

⟨Fε⃗[vm−1 + h]− Fε⃗[h], v
′
m(s)⟩ds+

2

∫ t

0

(B[vm−1 + h]−B[h]) ⟨Ah(s), v′m(s)⟩ds

≡ TC̄2
∗ ∥ε⃗∥

2N+2 +

∫ t

0

∥v′m(s)∥
2
ds+ Ĵ1 + Ĵ2 + Ĵ3,

with B̄m(t) = B[vm−1 + h](t) = B(∥vm−1(t) + h(t)∥2), ∥∇vm−1(t) +∇h(t)∥2).
We now estimate the integrals on the right – hand side of (3.52) as follows.

Estimating Ĵ1. We have

B̄′
m(t) = 2D1B[vm−1 + h](t)⟨vm−1 + h, v′m−1 + h′⟩ (3.53)

+ 2D2B[vm−1 + h](t)⟨∇vm−1 +∇h,∇v′m−1 +∇h′⟩,

hence ∣∣B̄′
m(t)

∣∣ ≤ 4M̄2
∗ K̃M̄∗(B) ≡ ζ̄1, for all ε⃗, ∥ε⃗∥ < 1, (3.54)

with M̄∗ = (1 +N1)M.
It follows from (3.54), that

Ĵ1 =

∫ t

0

B̄′
m(s)

(
∥vmx(s)∥2 + ∥v′mx(s)∥

2
)
ds ≤ ζ̄1

∫ t

0

(
∥vmx(s)∥2 + ∥v′mx(s)∥

2
)
ds. (3.55)

Estimating Ĵ2. Note that ∥f [vm−1 + h]− f [h]∥ ≤ 2KM̄∗(f) ∥vm−1∥C1([0,T ];H1
0 )
,

∥fi[vm−1 + h]− f1[h]∥ ≤ 2KM̄∗(fi) ∥vm−1∥C1([0,T ];H1
0 )
, hence, we have

∥Fε⃗[vm−1 + h]− Fε⃗[h]∥ ≤ ζ̄2 ∥vm−1∥C1([0,T ];H1
0 )
, (3.56)

where ζ̄2 = ζ̄2(M, f, f1, · · · , fp) = 2KM̄∗(f) + 2

p∑
i=1

KM̄∗(fi). Therefore, we deduce from (3.56)

that

Ĵ2 = 2

∫ t

0

∥Fε⃗[vm−1 + h]− Fε⃗[h]∥ ∥v′m(s)∥ ds

≤ T ζ̄22 ∥vm−1∥2C1([0,T ];H1
0 )
+

∫ t

0

∥v′m(s)∥
2
ds. (3.57)

Estimating Ĵ3. First, we need an estimation of |B[vm−1 + h]−B[h]| .
From the inequality

|B[vm−1 + h]−B[h]| ≤ 4M̄∗K̃M̄∗(B) ∥vm−1∥C1([0,T ];H1
0 )
,
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it follows that

|B[vm−1 + h]−B[h]| ≤ 4M̄∗K̃M̄∗(B) ∥vm−1∥C1([0,T ];H1
0 )
. (3.58)

We remark that

∥Ah(s)∥ ≤
∑

1≤|α|≤N

∥Auα(s)∥ ∥ε⃗α∥ ≤
∑

1≤|α|≤N

∥Auα(s)∥ ≤ 2N1M = 2M∗. (3.59)

Hence, we deduce from (3.58) and (3.59) that

Ĵ3 = 2

∫ t

0

(B[vm−1 + h]−B[h]) ⟨Ah(s), v′m(s)⟩ds (3.60)

≤ T ζ̄23 ∥vm−1∥2C1([0,T ];H1
0 )
+

∫ t

0

∥v′m(s)∥
2
ds,

in which ζ̄3 = ζ̄3(M,B) = 8M∗M̄∗K̃M̄∗(B).
Combining (3.52), (3.55), (3.57) and (3.60), then we obtain

∥v′m(t)∥2 + B̄m(t)
(
∥vmx(t)∥2 + ∥v′mx(t)∥

2
)

(3.61)

≤ TC̄2
∗ ∥ε⃗∥

2N+2 + T
(
ζ̄22 + ζ̄23

)
∥vm−1∥2C1([0,T ];H1

0 )
+(

3 + ζ̄1
) ∫ t

0

(
∥vmx(s)∥2 + ∥v′mx(s)∥

2
)
ds.

By using Gronwall’s lemma, we deduce from (3.61) that

∥vm∥C1([0,T ];H1
0 )
≤ σT ∥vm−1∥C1([0,T ];H1

0 )
+ δ, for all m ≥ 1, (3.62)

with σT = ηT
√
ζ̄22 + ζ̄23 , δ = ηT C̄∗ ∥ε⃗∥N+1 , ηT =

√
T

b∗
exp

(
1

2b∗
T
(
3 + ζ̄1

))
.

Assuming that
σT < 1, with a suitable constant T > 0. (3.63)

We can easily prove the following lemma.

Lemma 3.6. Let the sequence {zm} satisfy

zm ≤ σzm−1 + δ for all m ≥ 1, z0 = 0, (3.64)

where 0 ≤ σ < 1, δ ≥ 0 are given constants. Then

zm ≤ δ/(1− σ) for all m ≥ 1. □ (3.65)

Applying Lemma 3.5 to (3.62) in the case zm = ∥vm∥C1([0,T ];H1
0 )
, σ = σT = ηT

√
ζ̄22 + ζ̄23 < 1,

δ = ηT C̄∗ ∥ε⃗∥N+1 , it follows from (3.65) that

∥vm∥C1([0,T ];H1
0 )
≤ δ/(1− σT ) = CT ∥ε⃗∥N+1 , (3.66)

where CT =
ηT C̄∗

1− ηT
√

ζ̄22 + ζ̄23
.
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On the other hand, by using the linear approximation method in [27], the linear recurrent
sequence {vm} defined by (3.43) converges strongly in the space C1([0, T ];H1

0 ) to the solution
v of Prob (3.31). Hence, as m → +∞ in (3.66), we get that ∥v∥C1([0,T ];H1

0 )
≤ CT ∥ε⃗∥N+1 . This

implies that ∥∥∥∥∥∥uε⃗ −
∑
|γ|≤N

uγ ε⃗
γ

∥∥∥∥∥∥
C1([0,T ];H1

0 )

≤ CT ∥ε⃗∥N+1 . (3.67)

Finally, we summarize the obtained results in the following theorem.

Theorem 3.7. Let (H1), (H5) and (H6) hold. Then there exist constants M > 0 and T > 0
such that, for all ε⃗, with ∥ε⃗∥ < 1, the problem (Pε⃗) has a unique weak solution uε⃗ ∈ W1(M,T )
satisfying an asymptotic estimation up to order N + 1 as in (3.67), where the functions uν ,
|ν| ≤ N are the weak solutions of (P̃ν), |ν| ≤ N, respectively □

Remark 3.8. Typical examples about asymptotic expansion of solutions in a small parameter
can be found in some works, see [12]- [14], [21]. In the case of many small parameters, there
are only few results, for example, see [15] and [22] respectively to the asymptotic expansion of
solutions in two and three small parameters.

Acknowledgment. The authors wish to express their sincere thanks to the editor and the
referees for the valuable comments and important remarks for the improvement of the paper.

References

[1] Albert, J. (1989). On the decay of solutions of the generalized Benjamin-Bona-Mahony
equations, J. Math. Anal. Appl. 141 (2), 527-537.

[2] Amick, C.J., J.L. Bona, M.E. Schonbek (1989). Decay of solutions of some nonlinear wave
equations, J. Differential Equations, 81 (1), 1-49.

[3] Chattopadhyay, A., S. Gupta, A.K. Singh, S.A. Sahu (2009). Propagation of shear waves in
an irregular magnetoelastic monoclinic layer sandwiched between two isotropic half-spaces,
International Journal of Engineering, Science and Technology, 1 (1), 228-244.

[4] Clarkson, P.A. (1989). New similarity reductions and Painlevé analysis for the symmetric
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