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ABSTRACT

In this paper, we first introduce a new class of bilevel weak vector variational

inequality problems in locally convex Hausdorff topological vector spaces.

Then, using the Kakutani-Fan-Glicksberg fixed-point theorem, we establish

some existence conditions of the solution for this problem.
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1 Introduction and Preliminaries

It is known that, the existence conditions of solutions of optimization-related prob-

lems is one of the important topics in optimization theory and so many authors have

tried to find several good conditions of the existence of solution sets of various prob-

lems as optimization problems, complementarity problems traffic network problems,

equilibrium problems [5, 8, 9] and the references therein.

On the other hand, Mordukhovich [12] introduced equilibrium problems with

equilibrium constraints and studied optimal conditions to this problem in 2004. In

321



Thu Dau Mot University Journal of Science - Volume 2 - Issue 4-2020

recent years, equilibrium problems with equilibrium constraints have been attracted

by many authors in different directions, for example, the existence conditions of

solutions [3, 6, 10], the stability properties of solutions [6, 7, 2]. However, to the

best of our knowledge, up to now, there have not been any works on the existence

conditions of solutions of bilevel weak vector variational inequality problems.

Motivated and inspired by the above, in this paper, we investigate the existence

conditions of solutions for bilevel weak vector variational inequality problems in

locally convex Hausdorff topological vector spaces. Let X,Z be real locally convex

Hausdorff topological vector spaces, L(X,Z) be the space of all linear continuous

operators from X into Z, A be a nonempty compact subset of X and C1 ⊂ Z be a

closed convex and pointed cone with intC1 6= ∅, where intC1 is the interior of C1.

Let K : A ⇒ A and T : A ⇒ L(X,Z) be multifunctions, η : A × A → A be a

continuous single-valued mapping. Denoted 〈z, x〉 by the value of a linear operator

z ∈ L(X;Y ) at x ∈ A, we always assume that 〈., .〉 : L(X;Z)×A→ Z is continuous.

We consider the following weak vector quasi-variational inequality problems:

(WQVIP) Find x ∈ A such that, there exists z ∈ T (x) satisfying{
x ∈ K(x)

〈z, η(y, x)〉 ∈ Z \ −intC1 for all y ∈ K(x).

We denote the solution set of the problem (WQVIP) by Q(K,T ).

Let P be a real locally convex Hausdorff topological vector space, L(X,P ) be the

space of all linear continuous operators from X into P , C2 ⊂ P be a closed convex

and pointed cone with intC2 6= ∅ and H : A→ L(X,P ) be a single-valued mapping.

Also, we consider the following weak bilevel vector variational inequality problems:

(WBVIP) Find a point x ∈ Q(K,T ) such that

〈H(x), y − x〉 ∈ P \ −intC2, ∀y ∈ Q(K,T );

where Q(K,T ) be the solution set of the weak vector quasi-variational inequality

problems. We denote the solution set of the problem (WBVIP) by O(H).

Now, we recall the following well-known definitions and some results for the main

results:

Definition 1.1 (see [1]) Let X, Y be two topological vector spaces, F : X ⇒ Y be

a multifunction and let x0 ∈ X be a given point.
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(1) F is said to be lower semi-continuous (lsc) at x0 ∈ X if F (x0) ∩ U 6= ∅ for

some open set U ⊆ Y implies the existence of a neighborhood N of x0 such

that F (x) ∩ U 6= ∅ for all x ∈ N .

(2) F is said to be upper semi-continuous (usc) at x0 ∈ X if, for each open set

U ⊇ G(x0), there is a neighborhood N of x0 such that U ⊇ F (x) for all x ∈ N .

(3) F is said to be continuous at x0 ∈ X if it is both lsc and usc at x0 ∈ X

(4) F is said to be closed at x0 if, for each of the nets {xα} in X converging to

x0 and {yα} in Y converging to y0 such that yα ∈ F (xα), we have y0 ∈ F (x0).

If A ⊂ X, then F is said to be usc (lsc, continuous, closed, respectively) on the

set A if F is usc (lsc, continuous, closed, respectively) at all x ∈ domF ∩ A. If

A ≡ X, then we omit “on X” in the statement.

Lemma 1.1 (see [1]) Let X, Y be two topological vector spaces and F : X ⇒ Y be

a multifunction. Then we have the following:

(1) If F is upper semi-continuous with closed values, then F is closed.

(2) If F is closed and F (X) is compact, then F is upper semi-continuous.

Lemma 1.2 (see [1]) Let X, Y be two topological vector spaces and F : X ⇒ Y be

a multifunction. Then we have the following:

(1) F is lower semi-continuous x0 ∈ X if and only if, for each net {xα} ⊆ X

which converges to x0 ∈ X and for each y0 ∈ F (x0), there exists {yα} in Y

such that yα ∈ F (xα), yα → y0.

(2) If F has compact values, then F is upper semi-continuous x0 ∈ X if and only

if, for each net {xα} ⊆ X which converges to x0 ∈ X and for each net {yα}
in Y such that yα ∈ F (xα), there exist y0 ∈ F (x0) and a subnet {yβ} of {yα}
such that yβ → y0.

Lemma 1.3 (see [4]) Let A be a nonempty convex compact subset of Hausdorff

topological vector space X and N be a subset of A× A such that
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(i) for each at x ∈ A, (x, x) 6∈ N ;

(ii) for each at y ∈ A, the set {x ∈ A : (x, y) ∈ N} is open on A;

(iii) for each at x ∈ A, the set {y ∈ A : (x, y) ∈ N} is convex or empty.

Then there exists x0 ∈ A such that (x0, y) 6∈ N for all y ∈ A.

Lemma 1.4 (see [11]) Let A be a nonempty compact convex subset of a locally

convex Hausdorff vector topological space X. If F : A⇒ A is upper semi-continuous

and, for any x ∈ A, F (x) is nonempty convex closed, then there exists x∗ ∈ A such

that x∗ ∈ F (x∗).

2 Main Results

In this section, we establish some existence results for weak bilevel vector quasi-

variational inequality problems.

We first introduce the concept of weakly C-quasiconvexity.

Definition 2.1 Let X,Z be two topological vector spaces, A be a nonempty closed

subset of X, and C ⊂ Z is a solid pointed closed convex cone and f : A → Z be a

function.The mapping f is said to be weakly C-quasiconvex on A ⊂ X if, for each

x1, x2 ∈ A, λ ∈ [0, 1] with f(x1) ∈ Z \ −intC and f(x2) ∈ Z \ −intC, we have

f((1− λ)x1 + λx2) ∈ Z \ −intC,

We now establish some existence conditions of solution sets of the weak vector

quasi-variational inequality problems.

Lemma 2.1 Let X,Z be real locally convex Hausdorff topological vector spaces,

L(X,Z) be the space of all linear continuous operators from X into Z, A be a

nonempty compact subset of X and C1 ⊂ Z be a closed convex and pointed cone with

intC1 6= ∅, where intC1 is the interior of C1. Let K : A ⇒ A and T : A ⇒ L(X,Z)

be multifunctions, η : A × A → A be a continuous single-valued mapping. Denoted

〈z, x〉 by the value of a linear operator z ∈ L(X;Z) at x ∈ A, we always assume

that 〈., .〉 : L(X;Z)× A→ Z is continuous. Suppose the following conditions:

(i) K is continuous on A with nonempty compact convex values;
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(ii) T is upper semicontinuous on A with nonempty compact values;

(iii) for all x ∈ A, z ∈ L(X;Z), 〈z, η(x, x)〉 ∈ Z \ −intC1;

(iv) for all x ∈ A, z ∈ L(X;Z), the set {y ∈ A : 〈z, η(y, x)〉 /∈ Z \ −intC1} is

convex;

(v) for all y ∈ A, z ∈ L(X;Z), the map x 7→ 〈z, η(y, x)〉 is weakly C1-quasiconvex,

i.e., for all x1, x2 ∈ A and all λ ∈ [0, 1], y ∈ A, z ∈ L(X;Z), we have

〈z, η(y, x1)〉 ∈ Z \ −intC1 and 〈z, η(y, x2)〉 ∈ Z \ −intC1

=⇒ 〈z, η(y, λx1 + (1− λ)x2)〉 ∈ Z \ −intC1;

(vi) the set {(x, y, z) ∈ A× A× L(X,Z) : 〈z, η(y, x)〉 ∈ Z \ −intC1} is closed.

Then the weak vector quasi-variational inequality problem has a solution, i.e., there

exist x̄ ∈ A and z̄ ∈ T (x̄) such that x̄ ∈ K(x̄) satisfying

〈z̄, η(y, x̄)〉 ∈ Z \ −intC1,∀y ∈ K(x̄).

Moreover, the solution set of the weak vector quasi-variational inequality problem is

compact.

Proof. For all x ∈ A, z ∈ L(X,Z), we define a multifunction M : A×L(X,Z) ⇒

A by

M(x, z) = {a ∈ K(x) : 〈z, η(y, a)〉 ∈ Z \ −intC1, ∀y ∈ K(x)} .

First, we show that M(x, z) is nonempty. Indeed, for every x ∈ A, K(x) is

nonempty compact convex set. Set

N = {(a, y) ∈ K(x)×K(x) : 〈z, η(y, a)〉 /∈ Z \ −intC1} .

By the condition (iii), we have for any a ∈ K(x), (a, a) ∈ N. It follows from

the condition (iv) that the set {y ∈ K(x) : (a, y) 6∈ N} is convex. Moreover, by the

condition (iv), we have for any a ∈ K(x), the set {y ∈ K(x) : (a, y) ∈ N} is open.

So, by Lemma 1.3 there exists a∗ ∈ K(x) such that (a∗, y) /∈ N, for all y ∈ K(x),

i.e.,

〈z, η(y, a∗)〉 ∈ Z \ −intC1,∀y ∈ K(x).

Hence, M(x, z) is nonempty.
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Second, we verify that M(x, z) is a convex set. In fact, let a1, a2 ∈ M(x, z),

λ ∈ [0, 1] and put a = λa1 + (1 − λ)a2. Since a1, a2 ∈ K(x) and K(x) is a convex

set, we have a ∈ K(x). From a1, a2 ∈M(x, z), it follows that, for any y ∈ K(x), we

have

〈z, η(y, a1)〉 ∈ Z \ −intC1 and 〈z, η(y, a2)〉 ∈ Z \ −intC1.

By the condition (v), since the map x 7→ 〈z, η(y, x)〉 is weakly C1-quasiconvex, we

have

〈z, η(y, λx1 + (1− λ)x2)〉 ∈ Z \ −intC1, ∀λ ∈ [0, 1],

i.e., a ∈M(x, z). Therefore, M(x, z) is convex.

Third, we prove that M is upper semi-continuous with compact values. Indeed,

since A is a compact set, by Lemma 1.1(ii), we need only to show that M is a closed

mapping. In fact, assume that a net {(xα, zα, aα)} ⊂ A × L(X,Z) × K(x) with

aα ∈M(xα, zα) such that xα → x ∈ A, zα → z ∈ L(X,Z) and aα → a0.

Now, we need to verify that a0 ∈ M(x, z). Since aα ∈ K(xα) and K is upper

semi-continuous on A with nonempty compact values, it follows that K is closed

and so we have a0 ∈ K(x). Suppose that a0 6∈M(x, z). There exists y0 ∈ K(x) such

that

〈z0, η(y0, a0)〉 /∈ −intC1. (2.1)

It follows from the lower semi-continuity of K that there is a net {yα} such that

yα ∈ K(xα) and yα → y0 (taking a subnet if necessary). Since aα ∈ M(xα, zα), we

have

〈zα, η(yα, aα)〉 ∈ Z \ −intC1 for all α. (2.2)

By the condition (vi) together with (2.2), it follows that

〈z, η(y0, a0)〉 ∈ Z \ −intC1. (2.3)

This is the contradiction from (2.1) and (2.3). Therefore, we conclude that a0 ∈
M(x, z). Hence M is upper semi-continuous with nonempty compact values.

Fourth, we need to prove the solution set Q(K,T ) 6= ∅.
Define the set-valued mapping Ψ : A× L(X,Z) ⇒ A× L(X,Z) by

Ψ(x, z) = (M(x, z), T (x)),∀(x, z) ∈ A× L(X,Z).

Then, Ψ is upper semicontinuous on A×L(X,Z), Ψ(x, z) is nonempty closed convex

subset of A×L(X,Z). By Lemma 1.4, there exists a point (x, z) ∈ A×L(X,Z) such
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that (x, z) ∈ Ψ(x, z), i.e., x ∈M(x, z), z ∈ T (x∗). This implies that (x, z) ∈ A×T (x)

satisfy x ∈ K(x) and

〈z, η(y, x)〉 ∈ Z \ −intC1,∀y ∈ K(x),

i.e., the weak vector quasi-variational inequality problem has a solution.

Finally, we prove that Q(K,T ) is compact. In fact, since A is compact and

Q(K,T ) ⊂ A, we need only prove that Q(K,T ) is closed. Indeed, let a net {xα} ⊂
Q(K,T ) be such that xα → x0. Now, we prove that x0 ∈ Q(K,T ).

For any y0 ∈ K(x0), it follows from the lower semi-continuity of K, there is a

net {yα} ⊂ A with yα ∈ K(xα) and yα → y0. Since xα ∈ Q(K,T ), there exists

zα ∈ T (xα) such that

〈zα, η(yα, xα)〉 ∈ Z \ −intC1 for all α.

It follows from the upper semi-continuity and compactness T that z0 ∈ T (x0) such

that zα → z0 (taking subnets if necessary). By the condition (v) together with

(xα, yα, zα)→ (x0, y0, z0), we have

〈z0, η(y0, x0)〉 ∈ Z \ −intC1,

this means that x0 ∈ Q(K,T ). Thus Q(K,T ) is a closed set. Therefore, Q(K,T ) is

compact. This completes the proof. �

We now investigate the existence conditions for the weak bilevel vector variational

inequality problems.

Theorem 2.1 Suppose that all the conditions in Lemma 2.1 are satisfied, Q(K,T ))

is convex. Let P be a real locally convex Hausdorff topological vector space, L(X,P )

be the space of all linear continuous operators from X into P , C2 ⊂ P be a closed

convex and pointed cone with intC2 6= ∅ and H : A → L(X,P ) be a single-valued

convex mapping. Denoted 〈z, x〉 by the value of a linear operator z ∈ L(X;P ) at

x ∈ A, we always assume that 〈., .〉 : L(X;P ) × A → P is continuous and the

following additional conditions:

(i’) for all x ∈ Q(K,T ), 〈H(x), x− x〉 ∈ P \ −intC2;

(ii’) the set {y ∈ Q(K,T ) : 〈H(x), y∗ − x〉 ∈ −intC2} is convex;
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(iii’) for all y ∈ Q(K,T ), the map x 7→ 〈H(x), y−x〉 is weakly C2-quasiconvex, i.e.,

for all x1, x2 ∈ Q(K,T ) and all λ ∈ [0, 1], y ∈ Q(K,T ), we have

〈H(x1), y − x1〉 ∈ P \ −intC2 and 〈H(x1), y − x1〉 ∈ P \ −intC2

=⇒ 〈H(λx1 + (1− λ)x2), y − (λx1 + (1− λ)x2)〉 ∈ P \ −intC2;

(iv’) the set {(x, y) ∈ Q(K,T )×Q(K,T ) : 〈H(x), y − x〉 ∈ P \ −intC2} is closed.

Then the weak bilevel vector variational inequality problem has a solution, i.e., there

exists x̄ ∈ A such that x̄ ∈ Q(K,T ) and

〈H(x), y − x〉 ∈ P \ −intC2, ∀y ∈ Q(K,T ).

Moreover, the solution set of the weak bilevel vector variational inequality problem

is compact.

Proof. We define a multifunction B : A⇒ A by

B(x) = {b ∈ Q(K,T ) | 〈H(b), y − b〉 ∈ P \ −intC2, ∀y ∈ Q(K,T )}, x ∈ A

First, we prove that B(x) is nonempty. Indeed, for all y ∈ A, Q(K,T ) is a nonempty

compact convex set. Set

P = {(b, y) ∈ Q(K,T )×Q(K,T ) : 〈H(b), y − b〉 ∈ −intC2}.

Then we have the following: (a) The condition (i’) implies that, for any b ∈ Q(K,T ),

(b, b) 6∈ P. (b) The condition (ii’) implies that, for any b ∈ Q(K,T ), {y ∈ A : (b, y) ∈
P} is convex on Q(K,T ). (c) The condition (iv’) implies that, for any b ∈ Q(K,T ),

{y ∈ Q(K,T ) : (b, y) ∈ P} is open on Q(K,T ). By Lemma 1.3, there exists

b ∈ Q(K,T ) such that (b, y) 6∈ P for all y ∈ Q(K,T ), i.e., 〈H(b), y− b〉 ∈ P \−intC2

for all y ∈ Q(K,T )}. Thus it follows that B(x) is nonempty.

Second, we show that B(x) is a convex set. In fact, let b1, b2 ∈ B(x) and λ ∈ [0, 1]

and put b = λb1 + (1− λ)b2. Since b1, b2 ∈ Q(K,T ) and Q(K,T ) is a convex set, we

have b ∈ Q(K,T ). Thus it follows that, for all b1, b2 ∈ B(x),

〈H(b1), y − b1〉 ∈ P \ −intC2; and 〈H(b2), y − b2〉 ∈ P \ −intC2, ∀y ∈ B(x).

By the condition (iii’), since x 7→ 〈H(x), y − x〉 is weakly C2-quasiconvex, we have

〈H(λb1 + (1− λ)b2), y − λb1 + (1− λ)b2〉 ∈ P \ −intC2, ∀λ ∈ [0, 1],
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i.e., b ∈ B(x). Thus, B(x) is convex.

Third, we prove that B is upper semi-continuous on A with compact values.

Indeed, since A is a compact set, by Lemma 1.1 (ii), we need only to show that B is

a closed mapping. Let a net {xα} ⊂ A be such that xα → x ∈ A and let bα ∈ B(xα)

be such that bα → b0.

Now, we need to show that b0 ∈ B(x). Since bα ∈ Q(K,T ) and Q(K,T ) is

compact, we have b0 ∈ Q(K,T ). Suppose that b0 6∈ B(x). Then there exists

y ∈ Q(K,T ) such that

〈H(b0), y − b0〉 ∈ −intC2. (2.4)

On the other hand, since bα ∈ B(xα), we have

〈H(bα), y − bα〉 ∈ P \ −intC2 for all α. (2.5)

By the condition (iv’) together with (2.5), it follows that

〈H(b0), y − b0〉 ∈ P \ −intC2, (2.6)

which is a contradiction from (2.4) and (2.6). Thus b0 ∈ B(x). Hence B is upper

semi-continuous on A with nonempty compact values.

Fourth, we prove that the solution set O(H) is nonempty. In fact, since B is

upper semi-continuous on A with nonempty compact values, by Lemma 1.4, there

exists a point x̂ ∈ A such that x̂ ∈ B(x̂). Hence there exists x̂ ∈ Q(K,T ) such that

〈H(x̂), y − x̂〉 ∈ P \ −intC2, ∀y ∈ Q(K,T ),

i.e., the problem (WBVIP) has a solution.

Finally, we prove that O(H) is compact. Indeed, let a net {xα} ⊂ O(H) be such

that xα → x0. Now, we prove that x0 ∈ O(H). By the closedness of Q(K,T ), we

have x0 ∈ Q(K,T ). Since xα ∈ O(H), we obtain xα ∈ Q(K,T ) and

〈H(xα), y − xα〉 ∈ P \ −intC2, ∀y ∈ Q(K,T ).

By the condition (iv’) together with xα → x0, it follows that

〈H(x0), y − x0〉 ∈ P \ −intC2, ∀y ∈ Q(K,T ),

which means that x0 ∈ O(H). Thus O(H) is a closed set. Since O(H) ⊂ Q(K,T )

and Q(K,T ) is compact. It follows that O(H) is compact subset of A. This com-

pletes the proof. �
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3 Conclusions

In this work, we have established existence conditions to a new class of bilevel weak

vector variational inequality problems. To the best of our knowledge, up to now,

there have not been any works on the existence conditions of solutions for bilevel

weak vector variational inequality problems by using the Kakutani-Fan-Glicksberg

fixed-point theorem. Thus our results, Theorem 2.1 is new.
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