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1. Introduction

Lyapunov (1907) proved that if y(t) is a nontrivial solution of the boundary value
problem

y'(t) +r(Hy(t) =0,a<t<b, 1
{ y(@) = y(b) = 0, (1.1)

then

b
4

flr(t)ldt > " € C([ a,b],R). (1.2)

a

Inequality (1.2) is called the Lyapunov inequality for problem (1.1) and is used to show

that problem (1.1) has no nontrivial solution.

With the development of fractional derivatives, many researchers have generalized
problem (1.1) by replacing the second order derivative with fractional derivatives such as
the Caputo derivative, Hilfer derivative, and other types of fractional derivatives, or by
modifying the boundary conditions. These generalizations have led to various results,
such as those by Ferreira (2013), Ferreira (2014), Dien (2021), and others.

One of the generalizations of problem (1.1) is:
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{aiD‘W (aEDB'gy(t)) +f(ty(®)=0a<t<h0<af<1< a+p,
y(a) = 0,y(b) = H(w)

where g € Ci[a,b], f € C([a,b] X R,R), and ,£D%9(.) denotes the g-Caputo fractional

derivative of order & € (0,1). Dien (2021) showed that if there exists M > 0 such that

l/)(M)GmaX !
M > =T+ 5 lg' (s (Ol 2 a,p)

then problem (1.3) has at least one solution.

(1.3)

In this paper, we also study the existence of solutions to problem (1.3), but we provide a
different result from that of Dien (2021). Specifically, in Theorem 3.3, we show that
problem (1.3) has at least one solution if there exists M > 0 such that
YM)
M > b) —g(.

ot e - 90)
This result is entirely different from the one previously obtained by Dien (2021), and this
difference is illustrated more clearly in Examples 3.7 and 3.8.

a+f-1

g'(ri()

1Y (ab)

In Proposition 3.1, we construct a Green’s function that differs from those introduced by
previous authors, such as Dien (2021). As a result, some properties of the Green’s function
also differ (see Propositions 3.2 and 3.3), which is the main reason why our existence
condition in Theorem 3.4 deviates from earlier results.

2. Preliminaries
In this section, we recall some basic definitions. For convenience in writing, we denote
Cila,b] ={g € C'[a,b]: g'(t) > 0,V t € [a,b]}

Definition 2.1 (Podlubny, 1999). Let ¢ € C"[a,b],n € NT, and a € (n-1, n), then the
Caputo fractional derivative of order o is the expression

cDp(c) = j (¢ — )" 1™ (s)ds,

where I'(.) is the Gamma function.

Definition 2.2 (Osler, 1970). Let a >0, g € C1[a,b], and ¢ € C[a, b]. The fractional
integral of a function ¢ with respect to the function g is defined by

t

100 = —— f 9(0) — g()]*1g' ()b (s)ds.

Definition 2.3 (Almeida, 2017). Let a >0, n € N*¥; g,¢ € C"™[a, b] two functions such
that g’(t)>0, Vt€ [a, b]. The g-Caputo fractional derivative of ¢ of order o is given by

n

d d
e =) #(s)ds.

1 t
ED°99(0) = s [ 90 = g1
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For g(t) = t,Vt € [a, b], the g-Caputo fractional derivative ,$D%9(.) is becomes the
Caputo fractional derivative {D%(.).

Lemma 2.4 (Almeida, 2017). Letn € Nt,n— 1 < a <n,and g € Ci[a, b], we have

n—-1
(158 ED%9)(©) = $(O) + ) cilg(®) = g(@I*, ci € R, (k = 0,...,n— 1),
k=0

3. Main Results
3.1. The Green’s Function and Its Properties

Proposition 3.1. Let 0 < a,f < 1with a+f > 1, and let g € C}[a,b]. If y(t) is a
solution of problem (1.3) such that aEDﬁ'gy(.),f(.,y(.)) € C1[a,b], then y(t) is a

solution of the following integral equation

y(©) = (295 50 1 12606 )(g(b) ~ g()" g ) (5, y(s))ds.

where

1 g®O-g@\P  [g®)-g(s) ‘”f”‘l]
_ < <
r(a+p) [(g(b)—g(a)) (g(b)—g(s)) ass<tsb,

1 (g(t)—g(a)
r(a+p) \gb)-g(a)

Proof. The proof is similar to that in Lemma 3.1 of Dien (2021). i

G(t,s) =

)ﬁ,aStSSSb

The function G(t,s) constructed in Proposition 3.1 is called the Green’s function. This
construction differs from the one given by Dien (2021, Lemma 3.1), which leads to
several properties of the Green’s function that also differ from those in Dien (2021,
Proposition 3.3 and 3.4).

Proposition 3.2. Let 0 < a,f < 1,with a + 8 > 1, g € C}[a, b], and let the Green’s
function G (t, s) be defined as in Proposition 3.1. Then
1

t,gagb]lG(t, s)| = NCETD)

1 (g(t)—g(a))f”

Proof. First, we consider the case a <t <s < b, then G(t,s) = rard \a)—g@

Since g € C1[a, b], we have

0 < <g<t> —g(a))’f -

g(b) —g(@
and
g -g@\ _ o
(m) slet=s=b
Therefore,
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1
r(a+p)

Next, we consider a < s < t < b, and define

Mt s) = <g<t) - g(a))ﬁ . <g<t) - g(s))“’?‘l
' g(b)—g(@) gb) —g(s) '

By fixing t and differentiating h(t, s) with respect to s, we get

1

0<G(ts) < )

and G(t,s) =

ifand only if t = s = b.

oh
95 )= @B DT —9oF g = 9
Thus, for a <s <t<b, one has

1> h(t,t) > h(t,s) = h(t, a).

Notethat 0 < a, f < 1 < a + f3, this gives

_ B _ a-1
h(t,a)z(g(t) g(a)) [1_<g(t) g(a)) ]qu)’

9(b) —g(@ 9(b) —9(@

and
_ (90 —g@\*" g(t)—g(a))l‘“_ B
h“"”‘(y(b)—g(a)) (g(b)—g(a) 1]2 .

Therefore, 1 > |h(t, s)| = 0, which implies that

ax |G (g, ==,
asnsl<t)§b| &9l I'a+p)
Hence,
1 .
s,trrrel[%),(b] G(t,5)| = ra+py !

g')gd) — g®] <g(t) - g(s)>a+ﬁ_2 > 0.

Proposition 3.3. Let 0 < a,f <1< a+ B,g € Ci[a,bl, and let the Green’s function

G (t, s) be defined as in Proposition 3.1. Then, fora < t; < t, < b, the following
holds:

16(29) = 6 (6,9 < e
Proof. We first note the following observations:

) 0<a+p-1<p<1

ii) |a? —bP| < |a—b|?,fora,b = 0,p € (0,1].

o (g@®O-g@\P _ (g®)-g(s)\*TE T
iii) (g(b)—g(a)) 2(g(m—g(s))

To verify iii), observe that fora < s <t < b,

3 <g(t2) - g(t1)>ﬁ
gb)—g(s) )

,(fora<s<t<b.
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9B —g@ 9®-g6) _ (9B -9®)9©-9@) _
gb)—g@ gd)—gls) (gb) —g@)(gb) —g(s))

Thus,
g(t) —g(a) - g@®) —g(s) >0

gb)—gla) — gb)—g) ™

which implies that

(g(t) - g(a))ﬁ . (g(t) - g(s))“’?‘l . (g(t) - g(s))o‘*ﬁ‘l
gb)—g(@)) ~\gb)—g(s) ~\gb) —g(s) '

We now consider three cases:
Casel: a <t; <t, <s < b. Inthis case, by using i1), we get

1 gt)-g@\P  (gt)-g(@ ﬁ‘
— — _ (L7 8\% <
1G(t2,8) = Gt ) = 2 |(g(b)—g(a)) (g<b)—g(a)) =

1 (g(m—g(to)ﬁ
ra+p) \ g(b)-g(a)
Case2:a <t; < s <t, <b,byusing ii) and iii), one has

|G(t,,5) — G(ty,s)]
__1 |(g(t2)—g(a))ﬁ B (g(tz)—g(s))“””‘l B (g(tl)—g(a))ﬁ
r(a+p) |\g)-g(a) gb)—g(s) gb)—-g(a) ’
1 gt)-g@\P  [(gt)-g@\F | 9(t2)-g(s) ““H)

< Y AN VA A Sars AST-YAS A
— r(a+p) (|(y(b)—g(a)) (g(b)—g(a)) + (g(b)—g(S)) ’
1 9t)-gt\P | [(9(t)-g(@) ﬁ)

_I"(a+ﬂ)<( g(b)—g(a)) +(g(b)—g(a>) ’

2 (g(tz)—g(tl))ﬁ
—r(a+p) \ gb)-g(s)

Case3:a <s <t; <t, <bh. Wehave:

|G (ty,s) — G(ty,5)]
1 (t)-g@)P (t)-g(s)\*HE~1 (t)-g(@\F (t)-g()\* B 1
= T@+p) @(b)—j(a)) B (i(m—gg(s)) - (Z(b)—;](a)) (Z(b)—;](s)) ’
1 (g(tz) - g(a))ﬁ _ <g(t1) - g(a))ﬁ
“Ia+p)[\gb)—g(a) gb) —g(a)
L1 <g<t2> - g(s))“”?‘l s (g(to - g(s))”ﬁ‘l
r'a+p)\\g) —g(s) g(b) — g(s) ’
1 (g(tg - g(ta)’)’ L1 (g(@) - g(a))ﬂ N <g<t1) - g(a))ﬁ
"I+ p)\ gb) —g(a) ra+p)\\g) —ga) gb)—g@) )
< 3 (g(tz) - 9(&))1g
“Tra+p\gb)-gl@ )

Therefore, the desired estimate holds in all cases. |
Page 323

www.tdmujournal.vn


http://www.tdmujournal.vn/

Thu Dau Mot University Journal of Science ISSN (print): 1859-4433; (online): 2615-9635

3.2. Existence Conditions for the Integral Equation

In this section, we investigate conditions for the existence of solutions to the integral
equation of the form

_ (90-g@\F b B atp-1_,
y(© = (£525) 500 + [, 66, 9)(9®) = 9(9)* g ()f (5, y()ds, (1.4)
in the Banach space C[a,b] with the uniform norm. We impose the following
assumptions:

1) (A4): The function h: R — R is continuous, and there exists k¥ € (0,1) such that
[p(x)| < k|x|,Vx € R.

ii)  (Ay): The function f:[a,b] X R = R is continuous, and there exist functions
K1, K, € C([a.b], R), and non-decreasing function ¢ : R, — R, such that

| (&, 0)| < 11 (8). 9 (|x]), Vt € (a,b),Vx ER,
|f(t,x) = f(&, 9] < k2(8). ¢ (x,¥),Vt € (a,b),Vx,y ER,
where ¢ € C(R X R, R) and ¢(x,y) — 0 khi |x —y| — 0.
We obtain the following existence result.

Theorem 3.4 (Existence of Solution). Assume 0 < a,f <1, with a+ > 1. Let
g € Ci[a, b], and suppose that assumptions (A,) and (A,) are satisfied. Further
assume

(9®) =)™ g’ Ori() € L (a b, i = 12
If there exists M > 0 such that
M wih
"= (1- :cl;(r(i +B) ”(g(b) ~9()) OO 1Xab)’ (15)

then the integral equation (1.4) has at least one solution y, € C|a, b].
Proof. Consider the operator S: C[a, b] = C|a, b] defined by

(5y)(® = (2929 53y 4 262, 5)(gb) — 95)) g ()F (5,7()ds,

gb)-g(a)

where G(t,s) is the Green's function determined by the boundary conditions of the
problem (1.3).

We show that S satisfies the conditions of the Schauder fixed point theorem.
e Continuity of §
Lety,z € B, ={u € Cla,b]:||lul| < r}, (r > 0). Then:

ISy — Szl < klly — ||

t e g OO O 6® -0 g OO,
Since qb(y(s), z(s)) — 0 as y — z, it follows that is S continuous.
e S maps bounded sets into bounded sets
For y € B,, we have
syl <+ 2D (g0 - 9O gm0,
['(a+p) 1'(a,b)
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e S maps bounded sets into equicontinuous sets:
Fory € B,,a < t; < t, < b, we have

(g(m - g(a))ﬁ ~ <g<t1) - g(a))ﬁ

1S(v(t) = S(y ()] < g(b) — g(a) g(b) - g(a)

11621

b
n f 16(t2,5) — G(tr,9)1. (g(B) — 9() 7 g (). 1 (5, y(s)) s,

N N
< g(t2)-g(t1) 3 g(tz)—g(t1) b _
= (g(b)—g(a)) 1151 +F(a+/3)(g(b)—g(a)) J, (g

g g )1 (5, y())1ds,

_ B - B -
< (g—(tZ) g(tl)) er + 20 (g(tZ) g(tl)) ff(g(b) —g(S))aJrﬁ L9/ () (s)ds,

g()—g(a) I'(a+p) \ g(b)-g(a)
_ (9(t)-g(t)F 39 (9t)-gt)\F N atp-1 ,
= Goe) o +iep Gorae) [@® =90 'O by

B
= C1(g(t2) - g(t1)) ,
where C; is constant depending on r, Y (r), k, but independent of y. Since g is continuous,
it follows that S(B,) is relatively compact.

e Application of the Schauder fixed point theorem
Suppose y = ASy for some y € dBy, A € (0,1). Then
Y(M)

a+f-1

M= Iyl < NSyl < kM + 2o (ae) = ()" g' O () Han)
Thus,
Y(M) at+p-1
M= (1—-x)l(a+p) ” (9() - 9()) 9/ L' (ab)

This contradicts the assumption (1.5). Hence, S has at least one fixed point y, €
B,,.This fixed point is a solution to the integral equation (1.4). The theorem is proved. i

Theorem 3.5 (/5], Theorem 4.7). Let 0 < a,f <1< a+ [, and suppose g €
Ci[a,b],h € C(R, R). Assume that:

i)  Conditions (A4), and (A,) are satisfied;,
i)  g'(Or;(.) €L} (a,b),i=12.
If there exists M > 0 such that

l/)(M)Gmax I}
M > (1 — K')F((Z + ﬁ) ”g (')Kl(')”Ll(a,b); (16)
where
a+g—1
+8-1 ~ e
Gmax = (g(b) — g(a))a max{BF(a + B — 1)*F 1,% ’
(a+2p-1) B

then the boundary value problem (1.4) has at least one solution.
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Remark 3.6. Assuming the hypotheses in both Theorem 3.4 and Theorem 3.5 hold, we
compare the thresholds for M > 0 given in inequalities (1.5) and (1.6) to show that the
results of these two theorems are essentially different. Specifically, observe the distinction
between the following two quantities:

o A=|(g) -9

a+p-1

g'(r1()

L*(ab)

* B=(g(0)-9(@) " " GmaxIlg'CIer(llirap)-
We will now illustrate the difference between A and B through examples.
Example 3.7. Let « = 0,5; 8 = 1;a = 0; b = 1, and define the functions:
e g(t)=tvte[0,1],
e i, (t)=tVvte[01],
e f(t,x)=t.x,Vte[0,1],Vx€ER.
e Then we compute:
A-B =]1(b—s)0'55ds—@jlsds=i—£> 0=A4>B.
0 9 J 15 9
Example 3.8. Again, let « = 0,5; f = 1;a = 0; b = 1, and define:
e g(t)=1tVvte[01],
e K,(t) =t>vte[0,],
e f(t,x)=t.x,Vte[0,1],Vx€ER.
Then

1 2V3 (1 512 3
A-B=| (b-5)°5s5d ——f Sds = —— — " < 0> A<B.
fo( SYVstds === | $7dS = 5505~ 37

4. Conclusion and Further Directions

This paper presents an alternative approach to constructing the Green's function, thereby
extending the existence conditions for fractional differential equations with boundary
conditions. This expansion enables the application of the results to a broader class of
nonlinear problems.

In terms of applications, fractional differential equations with complex boundary
conditions arise in various real-world models, such as those in materials physics, systems
biology, control engineering, and finance. Establishing the existence of solutions is a
foundational step in ensuring the mathematical validity of such models before any
quantitative analysis or numerical simulation is performed. Hence, the results in this paper
may serve as a verification tool in engineering practice, particularly for systems involving
non-standard or nonlinear-dependent boundary conditions.

Future work may focus on studying the uniqueness and stability of solutions, as well as
generalizing the results to other types of fractional derivatives or different initial
conditions. Another practical direction involves integrating the theoretical results with
numerical methods to develop solution algorithms.
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