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ABSTRACT
In this paper, we are interested in the problem of determining the source function forthe
Sobolev equation with fractional Laplacian. This problem is non-well-posed. We show theerror
estimate between the exact solution and the regularized solution with the observed data in Lb

spaces.
Keywords: Sobolev equations, inverse source problem, Sobolev embeddings

1 Introduction

For α > 1, let Ω ∈ RN (N ≥ 1) with sufficiently smooth boundary ∂Ω. In this paper, we investigate
the following problem

νt −m∆νt + (−∆)αν = F (x, t), in Ω× (0, T ] (1.1)

where m > 0 is the diffusion coefficient, F is the source function and u desribe the distribution of the
temperature at space x and time t. Sobolev equation describing various physical phenomena, such as
heat conduction [1], homogeneous liquid permeability [2], propagation of long waves in a nonlinearly
dispersed medium [3]. From the fractional Laplacian (−∆)α with properties of fractional operator
(−∆)α has been described in detail in [1], [4], [5], [6]. The main purpose of this paper is to determine
the source function F (x, t) = φ(t)f(x) with the split form when we know that

ν(x, T ) = ξ(x), ν(x, 0) = 0, x ∈ Ω. (1.2)

The question of determining the function f when we know φ and ξ will be studied carefully in this
paper. It is surprising that the problem of determining the source function for the pseudo-parabolic
equation has not been investigated before. Our main task here is to construct a regularized method
which looking for the function fϵ and claim that

lim ∥fϵ − f∥ = 0, when ϵ → 0+. (1.3)
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within the appropriate range. It can be affirmed that our paper is one of the first works on the inverse
source problem for the Sobolev equation, on the regularization methods studied. In [7], the regular
method Tikhonov. Ma-Prakash-Deiveegan [8] applied the generalization and modification Tikhonov
regularization methods. The Landweber normalization method was first derived from [9], [10], [11],
[12]. Binh and co-authors, see [13] studied the Rayleigh-Stokes problem through the Tikhonov method.
However, these error estimates in the L2 spaces, the results in this paper are evaluated in the Lb spaces,
which also makes a new point in this paper. In addition, the source function of the current paper
depends on the φ function, making the calculation more cumbersome.

This article is organized as follows. Section 2 presents some preparatory knowledge. In the section
3, we give the Fourier formula of the source function of the problem. In Section 4, we provide a
convergence estimate.

2 Preliminary Results

The operator A = −∆ on V = H1
0(Ω) ∩H2(Ω), and A has the eigenvalues λn such that 0 < λ1 ≤

λ2 ≤ · · · ≤ λn → ∞ as n → ∞. The corresponding eigenfunctions are denoted by en ∈ V. Next, we
define by Aσ the following operator

Aσv :=

∞∑
n=1

λσ
n ⟨v, en⟩ en(x), v ∈ D (Aσ) =

{
v ∈ L2(Ω) :

∞∑
n=1

|⟨v, en⟩|2 λ2σ
n < ∞

}
. (2.1)

The domain D (Aσ) is the Banach space equipped with the norm

∥v∥D(Aσ) :=
( ∞∑

n=1

|⟨v, en⟩|2 λ2σ
n

) 1
2

(2.2)

Lemma 2.1. Let assume that α > 1, and φ : [0, T ] → R such that
0 < A1 ≤ φ(t) ≤ A2. Then we receive∫ T

0
exp

(
−(T − s)

λα
n

1 +mλn

)
φ(s)ds ≤ A2

1 +mλn

λα
n

, (2.3)

and

1 + aλn

λα
n

(
1− exp

(
−T

λα
1

1 +mλ1

))
A1

≤
∫ T

0
exp

(
−(T − s)

λα
n

(1 +mλn)

)
φ(s)ds. (2.4)

Proof. See in [14].

Lemma 2.2. (See [?] The following statement are true:

Lp(Ω) ↪→ D (Aµ) (Ω), if − N
4 < µ ≤ 0, p ≥ 2N

N−4µ

D (Aµ) (Ω) ↪→ Lp(Ω), if 0 ≤ µ < N
4 , p ≤ 2N

N−4µ

}

3 Inverse source problem

Taking the inner product of both sides of (1.1) with en(x), we get

d

dt

(∫
Ω
ν(x, t)en(x)dx

)
+mλn

(∫
Ω
ν(x, t)en(x)dx

)
+ λα

n

(∫
Ω
ν(x, t)en(x)dx

)
=

∫
Ω
F (x, t)en(x)dx, (3.1)
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and u(x, 0) = 0, we have that∫
Ω
ξ(x)en(x)dx =

∫ T

0
exp

(−(T − s)λα
n

1 +mλn

)(∫
Ω
F (x, s)en(x)dx

)
ds, (3.2)

since the fact that F (x, t) = φ(t)f(x), we get∫
Ω
f(x)en(x)dx =

∫
Ω ξ(x)en(x)dx∫ T

0 exp
(
−(T−s)λα

n
1+mλn

)
φ(s)ds

. (3.3)

Hence, we have

f(x) =

∞∑
n=1

( ∫
Ω ξ(x)en(x)dx∫ T

0 exp
(
−(T−s)λα

n
1+mλn

)
φ(s)ds

)
en(x). (3.4)

4 Regularization on Lb spaces

The following theorem will be our main result in this paper

Theorem 4.1. Let us take (ξϵ, φϵ) is observed data of (ξ, φ) such that

∥φϵ − φ∥Lb(0,T ) + ∥ξϵ − ξ∥Lb(Ω) ≤ ϵ, (4.1)

and φϵ(t) > A3 > 0 for any α > 1, and α−1 < b < 2. Assume that f ∈ D
(
Aσ+k

)
for σ > 0 and

0 < k < N
4 . A regularized solution built as follows

fC
ϵ (x) =

Cϵ∑
n=1

(∫
Ω ξϵ(x)en(x)dx

)
en(x)∫ T

0 exp
(
−(T − s) λα

n
1+mλn

)
φϵ(s)ds

. (4.2)

Then the error estimate

∥∥fCϵ
ϵ − f

∥∥
L

2N
N−4k (Ω)

is of ordermax
{
ϵδ, ϵ

σ(1−δ)

α−1+k+N
b

−N
2 , ϵ

(α−1)δ+k+N
b

−N
2

α−1+k+N
b

−N
2

}
· (4.3)

If we choice Cϵ satisfies

lim
ϵ→0

|Cϵ|α−1 ϵ = lim
ϵ→0

(
|Cϵ|α−1+k+N

b
−N

2 ϵ
)
= 0, lim

ϵ→0
Cϵ = +∞· (4.4)

Remark 4.2. Cϵ is chosen as follows:

Cϵ = ϵ
δ−1

α−1+k+N
b

−N
2 , 0 < δ < 1. (4.5)

Proof. In view of triangle inequality, we find that∥∥fCϵ
ϵ − f

∥∥
D(Ak) ≤

∥∥∥FCϵ
2 − f

∥∥∥
D(Ak)

+
∥∥∥FCϵ

2 −FCϵ
1

∥∥∥
D(Ak)

+
∥∥∥FCϵ

1 − fϵ

∥∥∥
D(Ak)

, (4.6)

whereby

FCϵ
1 (x) =

Cϵ∑
n=1

(∫
Ω ξ(x)en(x)dx

)
en(x)∫ T

0 exp
(
− (T − s) λα

n
1+mλn

)
φϵ(s)ds

,

FCϵ
2 (x) =

Cϵ∑
n=1

(∫
Ω ξ(x)en(x)dx

)
en(x)∫ T

0 exp
(
− (T − s) λα

n
1+mλn

)
φ(s)ds

· (4.7)
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Next, we considered the upper bound of (4.6). For convenience, we consider the following step.

Step 1 Estimate of
∥∥∥FCϵ

2 − f
∥∥∥
D(Ak)

FCϵ
2 − f =

∞∑
n=Cϵ+1

[∫ T

0
exp

(
−(T − s)

λα
n

1 +mλn

)
φ(s)ds

]−1(∫
Ω
ξ(x)en(x)dx

)
en(x)

=

∞∑
n=Cϵ+1

(∫
Ω
f(x)en(x)dx

)
en(x). (4.8)

From (4.8), using the Parseval equality, we have∥∥∥FCϵ
2 − f

∥∥∥2
D(Ak)

=

∞∑
n=Aϵ+1

λ2k
n

(∫
Ω
f(x)en(x)dx

)2

=
∞∑

n=Aϵ+1

λ−2σ
n λ2σ+2k

n

(∫
Ω
f(x)endx

)2

. (4.9)

If λn > Cϵ and n > 0, , it is easy to see that λ−2σ
n ≤ |Cϵ|−2σ, this implies that∥∥∥FCϵ

2 − f
∥∥∥2
D(Ak)

≤ |Cϵ|−2σ
∞∑

n=Cϵ

λ2σ+2k
n

(∫
Ω
f(x)en(x)dx

)2

= |Cϵ|−2σ ∥f∥2
D(Aσ+k). (4.10)

It gives ∥∥∥FCϵ
2 − f

∥∥∥
D(Aσ+k)

≤ |Cϵ|−σ ∥f∥D(Aσ+k) (4.11)

Step 2. Estimate of
∥∥∥FCϵ

1 −FCϵ
2

∥∥∥
D(Ak)

FCϵ
1 (x)−FCϵ

2 (x) =

Cϵ∑
n=1

∫ T
0 exp

(
−(T − s) λα

n
1+mλn

)
(φϵ(s)− φ(s)) ds∫ T

0 exp
(
−(T − s) λα

n
1+mλn

)
φϵ(s)ds

×
∫
Ω ξ(x)en(x)dx∫ T

0 exp
(
−(T − s) λα

n
1+mλn

)
φ(s)ds

en(x). (4.12)

We follows from (4.12) that∥∥∥FCϵ
1 −FCϵ

2

∥∥∥2
D(Ak)

=

Cϵ∑
n=1

∫ T
0 exp

(
−(T − s) λα

n
1+mλn

)
(φϵ(s)− φ(s)) ds∫ T

0 exp
(
−(T − s) λα

n
1+mλn

)
φϵ(s)ds

2

λ2k
n

(∫
Ω
f(x)en(x)dx

)2

. (4.13)

Thank to Hölder inequality, we know that∣∣∣∣∫ T

0
exp

(
−(T − s)

λα
n

1 +mλn

)
(φϵ(s)− φ(s)) ds

∣∣∣∣
≤

(∫ 1

0
|φϵ(s)− φ(s)|r ds

) 1
b
(∫ T

0
exp

(
−b∗(T − s)

λα
n

1 +mλn

)
ds

) 1
b∗

, (4.14)
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where b∗ = b
b−1 . It provide the following statement

(∫ T

0
|φϵ(s)− φ(s)|b ds

) 1
b

= ∥φϵ − φ∥Lb(0,T ) . (4.15)

Next, using the inequality 1− exp(−x) ≤ x,∀x ≥ 0, one has(∫ T

0
exp

(
−b∗(T − s)

λα
n

1 +mλn

)
ds

)
=

1

r∗ λα
n

1+mλn

(
1− exp

(
−Tb∗

λα
n

1 +mλn

))
≤ T. (4.16)

where we note that b > α−1, combining three evaluations (4.14), (4.15), and (4.16), we derive that
the following estimate∣∣∣ ∫ T

0
exp

(
− (T − s)

λα
n

1 +mλn

)
(φϵ(s)− φ(s)) ds

∣∣∣ ≤ T
1
b∗ ∥φϵ − φ∥Lb(0,T ) . (4.17)

Next, let assume that φϵ by a positive constant A3, we have immediately∫ T

0
exp

(
−(T − s)

λα
n

(1 +mλn)

)
φϵ(s)ds

≥ 1 + aλn

λα
n

(
1− exp

(
−T

λα
1

1 +mλ1

))
A3

≥ 1

λα−1
n

aA3

(
1− exp

(
−T

λα
1

1 +mλ1

))
. (4.18)

We assert that ∫ T
0 exp

(
−(T − s) λα

n
1+mλn

)
(φϵ(s)− φ(s)) ds∫ T

0 exp
(
−(T − s) λα

n
1+mλn

)
φϵ(s)ds

≤ λα−1
n T

1
b∗ ∥φϵ − φ∥Lb(0,T )

[
aA3

(
1− exp

(
−T

λα
1

1 +mλ1

))]−1

. (4.19)

By we denote

A5 = T
1
b∗

[
aA3

(
1− exp

(
−T

λα
1

1 +mλ1

))]−1

. (4.20)

Combining (4.14) to (4.20), we can see that

∥∥∥FCϵ
1 −FCϵ

2

∥∥∥2
D(Ak)

≤ A2
5

Cϵ∑
n=1

λ2α−2+2k
n

(∫
Ω
f(x)en(x)dx

)2

. (4.21)

The finite sum
∑Cϵ

n=1 λ
2α−2+2k
n

(∫
Ω f(x)en(x)dx

)2
is bounded by

|Cϵ|2α−2
Cϵ∑
n=1

λ2k
n

(∫
Ω
f(x)en(x)dx

)2

≤ |Cϵ|2α−2 ∥f∥2
D(Ak). (4.22)

Therefore, we follows from (4.22) that∥∥∥FCϵ
1 −FCϵ

2

∥∥∥
D(Ak)

≤ A5∥f∥D(Ak) |Cϵ|
α−1 ϵ. (4.23)
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Step 3. Estimate of
∥∥∥FCϵ

1 − fCϵ
ϵ

∥∥∥
D(Ak)

. From (4.12) and (4.16), we receive

FCϵ
1 (x)− fCϵ

ϵ (x) =

Cϵ∑
n=1

∫
Ω (ξϵ(x)− ξ(x)) en(x)dx∫ T

0 exp
(
−(T − s) λα

n
1+mλn

)
φϵ(s)ds

en(x). (4.24)

From (4.24), by taking the norm in space D
(
Ak

)
, add Parseval’ s equality, we obtain that

∥∥∥FCϵ
1 − fCϵ

ϵ

∥∥∥2
D(Ak)

=

Cϵ∑
n=1

( ∫
Ω (ξϵ(x)− ξ(x)) en(x)dx∫ T

0 exp
(
−(T − s) λα

n
1+mλn

)
φϵ(s)ds

)2

. (4.25)

Thank to the inequality (4.18), we get∥∥∥FCϵ
1 − fCϵ

ϵ

∥∥∥2
D(Ak)

=

[
aA3

(
1− exp

(
−Tλα

1

1 +mλ1

))]−2

×
Cϵ∑
n=1

λ2α−2+2k
n

(∫
Ω
(ξϵ(x)− ξ(x)) en(x)dx

)2

. (4.26)

Since 1 < b < 2, we know that Lb(Ω) ↪→ D(A
Nr−2N

2r )(Ω). we continue to deal with the finite series on
the right above as follows

Cϵ∑
n=1

λ2α−2+2k
n

(∫
Ω
(ξϵ(x)− ξ(x)) en(x)(x)dx

)2

=

Cϵ∑
n=1

λ
2α−2+2k+ 2N

b
−N

n λ
Nb−2N

b
n

(∫
Ω
(ξϵ(x)− ξ(x)) en(x)dx

)2

≤ |Cϵ|2α−2+2k+ 2N
b
−N

Cϵ∑
n=1

λ
Nb−2N

b
n

(∫
Ω
(ξϵ(x)− ξ(x)) en(x)dx

)2

= |Cϵ|2α−2+2k+ 2N
b
−N ∥ξϵ − ξ∥

D(A
Nb−2N

2b )
≲ |Cϵ|2α−2+2k+ 2N

b
−N ∥ξϵ − ξ∥Lb(Ω) . (4.27)

By summarizing all three evaluations 4.32, 4.33, we infer that∥∥∥FCϵ
1 − fCϵ

ϵ

∥∥∥
D(Ak)

≤ A5T
− 1

b∗ |Cϵ|α−1+k+N
b
−N

2 ϵ. (4.28)

From three steps, we can conclude that∥∥fCϵ
ϵ − f

∥∥
D(Ak) ≤ |Cϵ|−σ ∥f∥D(Aσ+k) +A5∥f∥D(Ak) |Cϵ|

α−1 ϵ

+A5T
− 1

b∗ |Cϵ|α−1+k+N
b
−N

2 ϵ. (4.29)

By using Lemma 2.2, since 0 < k < N
4 , we know that D

(
Ak

)
↪→ L

2N
N−4k (Ω), which yields to the desired

result (4.3).
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