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Abstract 

Fractional differential equations are an important branch of 

mathematics and have been considered under many different 

fractional derivatives. Among them, differential equations with Riesz-

Caputo fractional derivatives have also attracted the attention of many 

researchers. Studying differential equations that may have singularity 

coefficients is more difficult than usual because they require several 

complex techniques. In the present paper, we consider a nonlinear 

pantograph differential equation where the source function may have 

a temporal singularity. Using the contraction principle, we prove that 

the problem has a unique solution under some appropriate conditions. 

Furthermore, we define a new type of Ulam-Hyers stability and show 

the main equation of the problem is stable in the mentioned sense. To 

obtain the main results, a new inequality is proposed and proved. 

Some examples are constructed to confirm the validity and feasibility 

of the theoretical results. 

Keywords: contraction principle, Fractional differential equations, fractional pantograph 

equations, Riesz-Caputo fractional derivatives, Ulam-Hyers stability 
 
 

 

 

1. Introduction  

1.1. Background and literature 

Fractional calculus is a significant branch of mathematics that provides tools to model 

physical problems involving memory effects (Goncalves et al, 2020). Nowadays, 

applications of fractional calculus have been found in many fields of science and 

engineering, such as chemistry, electrical engineering, quantum mechanics, the fluid-

dynamic traffic model, electro-dynamics, pollution control, turbulence, etc., we refer to 

(Coffey et al., 2004; Iomin, 2019; Magin, 2006; Tarasov, 2010). Fractional derivatives 

are one of the central concepts of fractional calculus. Numerous concepts of fractional 

derivatives have been studied in literature such as Caputo, Hadamard, Riemann-Liouville, 

Hilfer, and Riesz-Caputo.  
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Various models have been proposed and studied for each type of derivative. Problems 

involving Riesz-Caputo fractional derivatives have also been considered in many papers. 

For instance, the works (Adjimi et al., 2022; Agrawal, 2007; Aleem et al., 2021; Chen et 

al., 2017; Chen et al., 2019; Rahou et al., 2023; Toprakseven, 2023) have considered the 

existence and uniqueness results for fractional differential equations with various 

initial/boundary value conditions. Gu et al. (Gu et al., 2019) established some criteria for 

the fractional differential equations with the Riesz space derivative to have a positive 

solution. It is worth noting that in the mentioned works, source functions of problems 

were assumed continuous. Problems related to Riesz-Caputo fractional derivatives with 

singularities have not been studied yet. Furthermore, pantograph problems with the 

mentioned derivative have also not been examined. 

1.2. The aim of the paper 

Motivated by the above analysis, we consider the pantograph problem involving Riesz-

Caputo fractional derivative as follows   

{
𝐷𝑇

𝛼𝑢(𝑡) = 𝑓(𝑡, 𝑢(𝑡), 𝑢(𝜆𝑡))0
𝑅𝐶 , 0 < 𝛼 ≤ 1, 𝜆 ∈ (0, 1), 𝑡 ∈ (0, 𝑇),

𝑢(0) = 𝐴, 𝑢(𝑇) = 𝐵.
       (1) 

Unlike the previous work, herein, we consider the source function of the problem may 

have a singularity. We provide some conditions such that the problem processes a solution 

uniquely. Moreover, we demonstrate that the main equation is Ulam-Hyers stability in a 

new sense.  

1.3. Outline of the paper  

The remainder of the paper is structured as follows. Section 2 presents some definitions 

and lemmas. Section 3 is devoted to stating and proving the main results. Section 4 

provides some examples to show the applicability of theoretical results. Some conclusions 

are given in Section 5. 

 

2. Mathematical preliminaries 

This part introduces some denotes, definitions, and lemmas that are the background 

knowledge for this study.  

Throughout this paper, we denote 𝐶[0, 𝑇] the space of all continuous functions on [0, 𝑇]. 
For 𝑢 ∈ 𝐶[0, 𝑇], let us denote ‖𝑢‖ = sup

0≤𝑡≤𝑇
|𝑢(𝑡)|.  

We continue by giving some definitions of fractional integral and Riesz-Caputo fractional 

derivatives 

Definition 1. Let 𝑛 ∈ 𝑁 and 𝛼 ∈ (𝑛 − 1, 𝑛]. The Riesz-Caputo fractional derivative is 

defined (Kilbas et al., 2006) as follows 

𝐷𝑇
𝛼𝑢(𝑡) =

1

𝛤(𝑛 − 𝛼)
∫ |𝑡 − 𝜏|𝛼−𝑛𝑢(𝑛)(𝜏)𝑑 𝜏

𝑇

0
0

𝑅𝐶  

          =
1

2
( 𝐷𝑡

𝛼
0
𝐶 + (−1)𝑛 𝐷𝑇

𝛼
𝑡

 𝐶 )𝑢(𝑡), 

where 𝛤(. ) is the Gamma function, 
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𝐷𝑡
𝛼

0
𝐶 𝑢(𝑡) =

1

𝛤(𝑛 − 𝛼)
∫ (𝑡 − 𝜏)𝛼−𝑛𝑢(𝑛)(𝜏)𝑑 𝜏

𝑡

0

 

and 

𝐷𝑇
𝛼

𝑡
𝐶 𝑢(𝑡) =

(−1)𝑛

𝛤(𝑛 − 𝛼)
∫ (𝜏 − 𝑡)𝛼−𝑛𝑢(𝑛)(𝜏)𝑑 𝜏

𝑇

𝑡

. 

In particularly, if 𝛼 ∈ (0, 1] and 𝑢 ∈ 𝐶(0, 𝑇), then 

𝐷𝑇
𝛼𝑢(𝑡) =

1

2
( 𝐷𝑡

𝛼
0

𝑅𝐶 − 𝐷𝑇
𝛼

𝑡
𝑅𝐶 )𝑢(𝑡)0

𝑅𝐶 . 

Definition 2. The left, right, and Riemann-Liouville fractional integrals of order 𝛼 are 

given as follows (Kilbas et al., 2006) 

𝐼𝑡
𝛼

0 𝑢(𝑡) =
1

𝛤(𝛼)
∫ (𝑡 − 𝜏)𝛼−𝑛𝑢(𝜏)𝑑 𝜏,

𝑡

0

 

𝐼𝑇
𝛼

𝑡 𝑢(𝑡) =
1

𝛤(𝛼)
∫ (𝜏 − 𝑡)𝛼−𝑛𝑢(𝜏)𝑑 𝜏

𝑇

𝑡

 

and 

𝐼𝑇
𝛼𝑢(𝑡)0 =

1

𝛤(𝛼)
∫ |𝑡 − 𝜏|𝛼−𝑛𝑢(𝜏)𝑑 𝜏.

𝑇

0

 

Definition 3. The main equation of the problem (1) is called Ulam-Hyers 𝜎-type stable 

for some 𝜎 > 0 if there exists 𝐶0 > 0  such that for each 𝜖 > 0 and each 𝑣 ∈ 𝐶([0, 𝑇], 𝑅) 

satisfies the following inequality 

| 𝐷𝑇
𝛼𝑣(𝑡) − 𝑓(𝑡, 𝑣(𝑡), 𝑣(𝜆𝑡))0

𝑅𝐶 | ≤ 𝜖𝑡−𝜎, 𝑡 ∈ (0, 𝑇), (2) 

where 𝑣(0) = 𝐴, 𝑣(𝑇) = 𝐵, there exists a solution 𝑢 ∈ 𝐶([0, 𝑇], 𝑅) of the problem (1) 

such that 

|𝑢(𝑡) − 𝑣(𝑡)| ≤ 𝐶0𝜖, 𝑡 ∈ [0, 𝑇]. 

Remark 1. The idea of Definition 3 was introduced in (Dien, 2024). If an equation is 

Ulam-Hyers 𝜎-type stable then it is Ulam-Hyers stable in common sense as defined in 

(Sousa and Oliveira, 2018), however, the converse is not true. 

Next, we provide some properties concerning the Riemann-Liouville integrals and 

Riesz-Caputo fractional derivatives (Kilbas et al., 2006; Chen et al., 2017). 

Lemma 1. If 𝑢 ∈ 𝐶𝑛(0, 𝑇), then 

𝐼𝑡
𝛼

0 𝐷𝑡
𝛼

0
𝐶 𝑢(𝑡) = 𝑢(𝑡) − ∑

𝑢(𝑘)(0)

𝑘!
𝑡𝑘

𝑛−1

𝑘=0

 

and 

𝐼𝑇
𝛼

𝑡 𝐷𝑇
𝛼

𝑡
𝐶 𝑢(𝑡) = (−1)𝑛 [𝑢(𝑡) − ∑

(−1)𝑘𝑢(𝑘)(𝑇)

𝑘!
(𝑇 − 𝑡)𝑘

𝑛−1

𝑘=0

]. 
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𝐼𝑇
𝛼

0 𝐷𝑇
𝛼𝑢(𝑡) =

1

2
( 𝐼𝑡

𝛼
0 𝐷𝑡

𝛼
0

𝑅𝐶 + (−1)𝑛 𝐼𝑇
𝛼

𝑡 𝐷𝑇
𝛼

𝑡
𝑅𝐶 )𝑢(𝑡)0

𝑅𝐶 . 

In particularly, if 𝛼 ∈ (0, 1] and 𝑢 ∈ 𝐶(0, 𝑇), then 

𝐼𝑇
𝛼

0 𝐷𝑇
𝛼𝑢(𝑡) = 𝑢(𝑡) −

1

2
(𝑢(0) + 𝑢(𝑇))0

𝑅𝐶 . 

Lemma 2 (Dien, 2021). Let 𝛾 < 𝛼 ≤ 1. Then, we have 

∫ 𝜏−𝛾(𝑡 − 𝜏)𝛼−1𝑑𝜏
𝑡

0

= 𝐵(𝛼, 1 − 𝛾)𝑡𝛼−𝛾, 

where 𝐵(. , . ) is the Beta function. 

Lemma 3. Let 𝑇 > 0, 𝛾 < 𝛼 ≤ 1. Then, we have 

∫ 𝜏−𝛾|𝑡 − 𝜏|𝛼−1𝑑𝜏 ≤ (𝐵(𝛼, 1 − 𝛾) +
1

𝛼
+

1

𝛼 − 𝛾
) 𝑇𝛼−𝛾

𝑇

0

 

for any 𝑡 ∈ [0, 𝑇]. 

Proof. We have    

∫ 𝜏−𝛾|𝑡 − 𝜏|𝛼−1𝑑𝜏
𝑇

0

   = ∫ 𝜏−𝛾(𝑡 − 𝜏)𝛼−1𝑑𝜏
𝑡

0

+ ∫ 𝜏−𝛾(𝜏 − 𝑡)𝛼−1𝑑𝜏
𝑇

𝑡

(3) 

For the first term, using Lemma 2, we have 

∫ 𝜏−𝛾(𝑡 − 𝜏)𝛼−1𝑑𝜏
𝑡

0

= 𝐵(𝛼, 1 − 𝛾)𝑡𝛼−𝛾 ≤ 𝐵(𝛼, 1 − 𝛾)𝑇𝛼−𝛾 (4) 

For the second term, we divide into two cases: 

In the first case: 𝑇 ≤ 2𝑡, we have  

∫ 𝜏−𝛾(𝜏 − 𝑡)𝛼−1𝑑𝜏
𝑇

𝑡

≤ 𝑡−𝛾 ∫ (𝜏 − 𝑡)𝛼−1𝑑𝜏
2𝑡

𝑡

 

                               =
1

𝛼
𝑡𝛼−𝛾 ≤

1

𝛼
𝑇𝛼−𝛾 (5) 

In the second case: 𝑇 > 2𝑡, then, we have 

∫ 𝜏−𝛾(𝜏 − 𝑡)𝛼−1𝑑𝜏
𝑇

𝑡

= ∫ 𝜏−𝛾(𝜏 − 𝑡)𝛼−1𝑑𝜏
2𝑡

𝑡

+ ∫ 𝜏−𝛾(𝜏 − 𝑡)𝛼−1𝑑𝜏
𝑇

2𝑡

 

                          ≤ 𝑡−𝛾 ∫ (𝜏 − 𝑡)𝛼−1𝑑𝜏
2𝑡

𝑡

+ ∫ 𝜏𝛼−𝛾−1𝑑𝜏
𝑇

2𝑡

 

                     ≤
1

𝛼
𝑡𝛼−𝛾 +

1

𝛼 − 𝛾
(𝑇𝛼−𝛾 − (2𝑡)𝛼−𝛾)  

                                                 

≤ (
1

𝛼
+

1

𝛼 − 𝛾
) 𝑇𝛼−𝛾         (6) 

Combining (5) and (6), we get 
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∫ 𝜏−𝛾(𝜏 − 𝑡)𝛼−1𝑑𝜏
𝑇

𝑡

≤ (
1

𝛼
+

1

𝛼 − 𝛾
) 𝑇𝛼−𝛾         (7)  

for all 𝑡 ∈ [0, 𝑇]. 

Pushing (4) and (7) into (3), we obtain 

∫ 𝜏−𝛾|𝑡 − 𝜏|𝛼−1𝑑𝜏
𝑇

0

≤ (𝐵(𝛼, 1 − 𝛾) +
1

𝛼
+

1

𝛼 − 𝛾
) 𝑇𝛼−𝛾 

. 

This completes the proof of the lemma. 

Lemma 4 (Principle contraction). Let 𝐵 be a Banach space. Suppose that 𝐹: 𝐵 → 𝐵 is 

a contraction mapping, i.e., there exists 𝑘 ∈ (0, 1) such that 

|𝐹(𝑢) − 𝐹(𝑣)| ≤ 𝑘|𝑢 − 𝑣|  for all 𝑢, 𝑣 ∈ 𝐵. 

Then 𝐹 admits a unique fixed point in 𝐵, i.e., there is a unique 𝑢0 ∈ 𝐵 such that 

𝐹(𝑢0) = 𝑢0. 

3. Fundamental results 

In this section, we state and prove the main results of the paper. We begin by posing an 

assumption for the source function. 

Assumption (A1): There exist γ < α ≤ 1 and 𝐿 > 0 such that 

|f(t, u1, v1) − f(t, u2, v2)| ≤ Lt−γ(|u1 − v1| + |u2 − v2|),  

|f(t, 0,0)| ≤ Lt−γ 

for any 𝑢1, 𝑢2, 𝑣1, 𝑣2 ∈ 𝑅 and 𝑡 ∈ (0, 𝑇). 

Based on the above assumption, we state the existence and uniqueness result as follows. 

Theorem 1. Let 𝛼 ∈ (0, 1], 𝑇 > 0. Suppose that Assumption (A1) is satisfied. If 

2𝐿

Γ(𝛼)
(𝐵(𝛼, 1 − 𝛾) +

1

𝛼
+

1

𝛼 − 𝛾
) 𝑇𝛼−𝛾 < 1, 

then the problem (1) has a unique solution in 𝐶[0, 𝑇]. 

Proof. Using Lemma 1, we have 

𝐼𝑇
𝛼

0 𝑓(𝑡, 𝑢(𝑡), 𝑢(𝜆𝑡)) = 𝐼𝑇
𝛼

0 𝐷𝑇
𝛼𝑢(𝑡) = 𝑢(𝑡) −

1

2
(𝑢(0) + 𝑢(𝑇))0

𝑅𝐶  

or  

𝑢(𝑡) =
1

2
(𝐴 + 𝐵) +

1

Γ(𝛼)
∫ |𝜏 − 𝑡|𝛼−1𝑓(𝜏, 𝑢(𝜏), 𝑢(𝜆𝜏))𝑑𝜏

𝑇

0

. 

To continue, let us define the following operator 𝐹: 𝐶[0, 𝑇] → 𝐶[0, 𝑇] given by 

𝐹𝑢(𝑡) =
1

2
(𝐴 + 𝐵) +

1

Γ(𝛼)
∫ |𝜏 − 𝑡|𝛼−1𝑓(𝜏, 𝑢(𝜏), 𝑢(𝜆𝜏))𝑑𝜏

𝑇

0

. (8) 

Using Assumption (A1) and Lemma 3, for any 𝑢, 𝑣 ∈ 𝐶[0, 𝑇], we have 
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|𝐹𝑢(𝑡) − 𝐹𝑣(𝑡)| ≤
1

Γ(𝛼)
∫ |𝜏 − 𝑡|𝛼−1|𝑓(𝜏, 𝑢(𝜏), 𝑢(𝜆𝜏)) − 𝑓(𝜏, 𝑣(𝜏), 𝑣(𝜆𝜏))|𝑑𝜏

𝑇

0

 

                              ≤
𝐿

Γ(𝛼)
∫ 𝜏−𝛾|𝜏 − 𝑡|𝛼−1(|𝑢(𝜏) − 𝑣(𝜏)| + |𝑢(𝜆𝜏) − 𝑣(𝜆𝜏)|)𝑑𝜏.

𝑇

0

 

Since 0 ≤ 𝜆𝑡 ≤ 𝑡, this implies that |𝑢(𝜆𝜏) − 𝑣(𝜆𝜏)| ≤ ‖𝑢 − 𝑣‖ for any 𝑡 ∈ [0, 𝑇]. 
Therefore, we deduce from Lemma 3 that 

|𝐹𝑢(𝑡) − 𝐹𝑣(𝑡)| ≤
2𝐿

Γ(𝛼)
‖𝑢 − 𝑣‖ ∫ 𝜏−𝛾|𝜏 − 𝑡|𝛼−1𝑑𝜏

𝑇

0

 

                                                       ≤
2𝐿

Γ(𝛼)
(𝐵(𝛼, 1 − 𝛾) +

1

𝛼
+

1

𝛼 − 𝛾
) 𝑇𝛼−𝛾‖𝑢 − 𝑣‖. 

This leads to 

||𝐹𝑢 − 𝐹𝑣| ≤
2𝐿

Γ(𝛼)
(𝐵(𝛼, 1 − 𝛾) +

1

𝛼
+

1

𝛼 − 𝛾
) 𝑇𝛼−𝛾‖𝑢 − 𝑣‖. 

Since 
2𝐿

Γ(𝛼)
(𝐵(𝛼, 1 − 𝛾) +

1

𝛼
+

1

𝛼−𝛾
) 𝑇𝛼−𝛾 < 1, the latter inequality shows that 𝐹 is a 

contraction mapping in 𝐶[0, 𝑇]. So, in view of Lemma 4, we conclude that 𝐹 has a unique 

fixed point in 𝐶[0, 𝑇], which is a solution to the problem (1). The proof of Theorem 1 is 

done. 

Theorem 2. Suppose that all the assumptions in Theorem 1 hold. Then the main equation 

of the problem (1) is Ulam-Hyers 𝜎-type stable for any 𝜎 ∈ [0, 𝛼). 

Proof. According to Theorem 1, the problem (1) has a unique solution belongs to 𝐶[0, 𝑇] 
satisfying  

𝑢(𝑡) = 𝐹𝑢(𝑡), (9) 

where 𝐹 defined in (8). On the other hand, if 𝑣 satisfies (2), then there exists 𝜑(𝑡) ∈
𝐶[0, 𝑇] and |𝜑(𝑡)| ≤ 𝑡−𝜎 such that 

𝐷𝑇
𝛼𝑣(𝑡) − 𝑓(𝑡, 𝑣(𝑡), 𝑣(𝜆𝑡))0

𝑅𝐶 = 𝜖𝜑(𝑡), 

and 𝑣(0) = 𝐴, 𝑣(𝑇) = 𝐵. This leads to 

𝑣(𝑡) =
1

2
(𝐴 + 𝐵) +

1

Γ(𝛼)
∫ |𝜏 − 𝑡|𝛼−1(𝑓(𝜏, 𝑣(𝜏), 𝑣(𝜆𝜏)) + 𝜖𝜑(𝜏))𝑑𝜏

𝑇

0

 

or 

𝑣(𝑡) − 𝐹𝑣(𝑡) =
𝜖

Γ(𝛼)
∫ |𝜏 − 𝑡|𝛼−1𝜑(𝜏)𝑑𝜏

𝑇

0

. 

So, using Lemma 3, we get 

|𝑣(𝑡) − 𝐹𝑣(𝑡)| ≤
𝜖

Γ(𝛼)
∫ |𝜏 − 𝑡|𝛼−1𝜏−𝜎𝑑𝜏

𝑇

0

 

                                                                 ≤
𝜖

Γ(𝛼)
(𝐵(𝛼, 1 − 𝜎) +

1

𝛼
+

1

𝛼 − 𝜎
) 𝑇𝛼−𝜎. (10) 

Furthermore, in the process of the proof of Theorem 1, we have proved that 
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|𝐹𝑢(𝑡) − 𝐹𝑣(𝑡)| ≤
2𝐿

Γ(𝛼)
(𝐵(𝛼, 1 − 𝛾) +

1

𝛼
+

1

𝛼 − 𝛾
) 𝑇𝛼−𝛾‖𝑢 − 𝑣‖. 

Using the latter inequality together with (9) and (10), we obtain 

                   |𝑢(𝑡) − 𝑣(𝑡)| = |𝐹𝑢(𝑡) − 𝑣(𝑡)|  

                                          ≤ |𝐹𝑢(𝑡) − 𝐹𝑣(𝑡)| + |𝑣(𝑡) − 𝐹𝑣(𝑡)|                        

                                                ≤
2𝐿

Γ(𝛼)
(𝐵(𝛼, 1 − 𝛾) +

1

𝛼
+

1

𝛼 − 𝛾
) 𝑇𝛼−𝛾‖𝑢 − 𝑣‖ 

                                                 +
𝜖

Γ(𝛼)
(𝐵(𝛼, 1 − 𝜎) +

1

𝛼
+

1

𝛼 − 𝜎
) 𝑇𝛼−𝜎. 

It implies that 

                          ‖𝑢 − 𝑣‖ ≤
2𝐿

Γ(𝛼)
(𝐵(𝛼, 1 − 𝛾) +

1

𝛼
+

1

𝛼 − 𝛾
) 𝑇𝛼−𝛾‖𝑢 − 𝑣‖ 

                                            +
𝜖

Γ(𝛼)
(𝐵(𝛼, 1 − 𝜎) +

1

𝛼
+

1

𝛼 − 𝜎
) 𝑇𝛼−𝜎. 

This gives 

‖𝑢 − 𝑣‖ ≤

1
Γ(𝛼)

(𝐵(𝛼, 1 − 𝜎) +
1
𝛼 +

1
𝛼 − 𝜎) 𝑇𝛼−𝜎

1 −
2𝐿

Γ(𝛼)
(𝐵(𝛼, 1 − 𝛾) +

1
𝛼 +

1
𝛼 − 𝛾) 𝑇𝛼−𝛾

𝜖 

or  

|𝑢(𝑡) − 𝑣(𝑡) ≤

1
Γ(𝛼)

(𝐵(𝛼, 1 − 𝜎) +
1
𝛼

+
1

𝛼 − 𝜎
) 𝑇𝛼−𝜎

1 −
2𝐿

Γ(𝛼)
(𝐵(𝛼, 1 − 𝛾) +

1
𝛼 +

1
𝛼 − 𝛾) 𝑇𝛼−𝛾

𝜖 

for all 𝑡 ∈ [0, 𝑇]. This completes the proof of Theorem 2. 

 

4. Examples 

In this section, we construct two examples to validate the applicability of theoretical 

results. 

Example 1. Consider the following problem 

{
𝐷𝑇

0.9𝑢(𝑡) =0
𝑅𝐶

1

20𝑡0.6
(sin 𝑢(𝑡) + 𝑢(0.8𝑡)),   𝑡 ∈ (0, 1),

𝑢(0) = 0, 𝑢(𝑇) = 0.
       (11) 

Herein, we have 𝑇 = 1, 𝛼 = 0.9, 𝛾 = 0.6, 𝜆 = 0.8, and 

 f(t, u(t), u(λt)) =
1

20𝑡0.6
(sin 𝑢(𝑡) + 𝑢(0.8𝑡)). 

Using the fact that | sin 𝑢(𝑡) − sin 𝑣(𝑡)| ≤ |𝑢(𝑡) − 𝑣(𝑡)|, we have 

|f(t, u(t), u(λt)) − f(t, v(t), v(λt))| =
𝐿

𝑡0.6
(|𝑢(𝑡) − 𝑣(𝑡)| + |𝑢(0.8𝑡) − 𝑣(0.8𝑡)|), 

where 𝐿 = 1/20, and 
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f(t, 0, 0) = 0. 

So, Assumption (A1) holds. On the other hand, we have 

2𝐿

Γ(𝛼)
(𝐵(𝛼, 1 − 𝛾) +

1

𝛼
+

1

𝛼 − 𝛾
) 𝑇𝛼−𝛾 ≈

0.1

1.07
(2.64 + 1.11 + 2,5) ≈ 0.58 < 1. 

We find that all the assumptions in Theorem 1 are satisfied.  Therefore, using Theorem 1 

and Theorem 1, we conclude that problem (11) has a unique solution and the main 

equation of the problem is Ulam-Hyers 𝜎-stable for any 𝜎 < 0.9. 

Example 2. Consider the following problem 

{
𝐷𝑇

0.8𝑢(𝑡) =0
𝑅𝐶

1

10𝑡0.2
(𝑢(𝑡) +

1

|𝑢(0.9𝑡)| + 1
+ 1) ,   𝑡 ∈ (0, 1),

𝑢(0) = 1, 𝑢(𝑇) = 2.

       (12) 

We have 𝑇 = 1, 𝛼 = 0.8, 𝛾 = 0.2, 𝜆 = 0.9, and 

 f(t, u(t), u(λt)) =
1

10𝑡0.2
(𝑢(𝑡) +

1

|𝑢(0.9𝑡)| + 1
+ 1). 

By direct computation, we have 

|
1

|𝑢(0.9𝑡)| + 1
−

1

|𝑣(0.9𝑡)| + 1
| ≤ |𝑢(0.9𝑡) − 𝑣(0.9𝑡)|. 

This leads to 

|f(t, u(t), u(λt)) − f(t, v(t), v(λt))| =
𝐿

𝑡0.2
(|𝑢(𝑡) − 𝑣(𝑡)| + |𝑢(0.9𝑡) − 𝑣(0.9𝑡)|), 

where 𝐿 = 1/10, and 

f(t, 0, 0) =
1

10𝑡0.2
. 

It means that Assumption (A1) holds. On the other hand, we have 

2𝐿

Γ(𝛼)
(𝐵(𝛼, 1 − 𝛾) +

1

𝛼
+

1

𝛼 − 𝛾
) 𝑇𝛼−𝛾 ≈

0.2

1.16
(1.46 + 1.25 + 1.67) ≈ 0.76 < 1. 

So, all the assumptions in Theorem 1 hold.  Using Theorem 1 and Theorem 1, we 

conclude that problem (12) has a unique solution and the main equation of the problem is 

Ulam-Hyers 𝜎-stable for any 𝜎 < 0.8. 

 

5. Conclusions 

Fractional differential equations with weakly singular sources are harder to study than the 

other cases. To over this difficulty, we need to use some complex techniques. This paper 

has considered the pantograph differential equation connected to the Riesz-Caputo 

fractional derivative where the source function may have a singularity. Under some 

suitable conditions, we have shown that the problem has a unique solution. Moreover, we 

have also proved that the main equation of the problem is Ulam-Hyers 𝜎-type stable. We 

have also constructed two examples to illustrate the obtained results. In future works, we 

would like to develop these results to general delay fractional equations with weakly 

singular sources. 
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