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analyzing its properties. Next, we employ a fixed-point theorem to
obtain the existence and uniqueness of the solution to the problem.
The paper concludes with three examples that illustrate the theoretical
results.
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1. Introduction

1.1. Background and literature

Recently, boundary value problems involving fractional-order derivatives have
attracted considerable attention and extensive research due to their wide range of
applications in various fields such as physics, mechanics, biology, engineering, signal
processing, etc. "Investigating the properties of solutions, including existence,
eigenvalue estimates, and Lyapunov-type inequalities, plays a crucial role”. Therefore,
investigating the properties of boundary value problems involving different types of
fractional derivatives is significant both in theory and in practical applications.
Fractional derivatives and several related problems are introduced in the book (Kibas et
al, 2006; Miller and Ross, 1993).

Boundary value problems involving Hadamard fractional derivatives have also been
presented in (Benhamida et al, 2018; He et al 2022). However, in these studies, the order
of the derivative « is relatively small (typically a € (1,2]). Hence, extending the
research to problems with more general fractional orders is necessary.

A Lyapunov-type inequality was investigated in (Dien, 2021) and by several other
authors mentioned in (Ntouyas et al, 2022). However, the inequality for the problem
with general fractional boundary conditions involving the Hadamard derivative has not
yet been thoroughly studied.
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1.2. The aim of the paper

Motivated by the above reasons, in this paper, we establish a Lyapunov-type inequality
for a general fractional boundary value problem involving the Hadamard fractional
derivative of arbitrary order. More specifically, withn > 2,n—1<a<nvan-—-2<
y<n—1leta—n+k<a,<a—n+k+1fork=1.2,..,n— 2, we consider the
following problem:

{HD“u(t) = f(t,u)),1<t<b,
u(1l) = ip%iy(1) =..= Ap*-2y(1) = D u(b) = 0.
We construct the Green's function for problem (1.1), derive an upper bound estimate for

this Green's function, establish a Lyapunov-type inequality, and present a result on the
existence and uniqueness of the solution to problem (1.1).

(1.1

2. Preliminaries
In this section, we present the notations, definitions, and preliminary concepts that will

be used throughout the remainder of the paper.

We begin by introducing the concepts and some properties related to the Hadamard
fractional integral and derivative. These concepts and properties have been presented in
various references, such as (Benhamida et al, 2018; He et al 2022).

Definition 2.1. The Hadamard fractional integral of order a of a function: [1, +o0) —
R is defined by

a—lh S
st, a > 0.

1%h(t) = ﬁ fl t (mé)

Definition 2.2. The Hadamard fractional derivative of order a of a function h on the
interval [1, +o0) is defined by

1 d\" rt/ t\"*1h(s)
h(t) Fi— ) tdt ) n- —~ ds n <a<n
Lemma 2.3. Let « = 0. Then, the differential equation

Hpep(t) =0,

has the general solution

n

h(t) = Z ¢;(In )%,

j=1

moreover

n

19 DaR(t) = h(t) + Z ¢;(In £).

j=1
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Lemma24. Ifa >0, >0and 0 < a < oo, then

a-1 F( ) at+p-1
(g 0=t

and
AN I'(a) x\@B-1
“Df (1n-) =—2 (i
na ) F(a—ﬁ)(na)
Next, we introduce the contraction mapping principle in a Banach space. This is a well-
known result that has been presented in many references, such as (Zeidler, 1986).

Proposition 2.5. (Banach's contraction mapping principle). Let ( X, || - ||x ) be a Banach
space and let ) be a closed subset of X. Suppose that P: () — () satisfies the condition, k €
(0,1)

IPW) = PW)llx < kllu—vllx, Vuven (2.1

Then, there exists a unique fixed point of P in (), that is, there exists a unique element
Uy € N such that P(uy) = u,.

3. Main results

3.1. Green's function

In this section, we introduce the Green's function of problem (1.1). In addition, we provide
an upper bound estimate for this Green's function.

Proposition 3.1. If u is a solution of problem (1.1), then u satisfies the following
equation:

a-y—1

1 (b1/ b
u(t) = mfl ?<ln;) G(t, T)f(r,u(r))dr,

where

[ (npye (lng)a_1
(Inb)a-r-1 (lné)a—y—l' =

G(t, 1) =4
(Int)*-1
\(In p)a—v-1’

Proof- We use Lemma (2.3), the general solution of equation (1.1) has the form
n-1

u(t) = I%F(t, u(t)) + Z ¢ (In £)@ T+, (3.1)

k=0
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Att = 1, we obtain ¢, = 0. Replacing ¢, = 0 in (3.1), we have

lNla—n+k+1)
a—n+k+1—ap)

(ln t)a—n+k—ap ]

n-1
HDa’pu(t) = ]a’_apf(t,U(t)) + Z Cr F(
k=p

By successively applying the condition “D*u(1) = 0 forp = 1,2,..,n — 2, we obtain
¢, =0 forallp = 1,2,..,n — 2. Finally, we also have

ApYu(t) = 1*7Vf(t,u(t)) + ¢ ﬂﬂan t)e -1,
" Ta-y)
Since DY, u(b) = 0, it is easy to see that
Fla-y)
- _ -y
1= T @) Inb)e 1! f(t'”(t))tzb
a-y-1
1 b1 lng
= —m 1 o s f(r,u(r))dr.

Substituting all the coefficients ¢, for k = 1,2,..,n — 1 into (3.1), we obtain

1 tl a-1
wO=rg5 | () seu@)e
b a-y-1
1 b 1 11’1? 1
"T(@)J, z\Inb (Int)*~f (z,u(r))dz
1 (t1/ t\*1!
“ 5@ ). z(n)  sEu@)e
mE\“
1 (f1fIng
‘@L b (In )% £ (7, u(r))dr
, | a-y—-1
1 1({n=
) ) woEumr
1 (b1, p\@r?!
— e[ 1(m3) T eCorum)

where

(o ()
(11’1 b)a—y—l ( . b)a’—)f—l

G(t, T) = 4 1 ?
(Int)*1
\(Inp)a-¥-1’ Ist=ts=b
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O

Definition 3.2. The function G in Proposition 3.1 is called the green function of the
problem (1.1).

Remark 3.3. The Green's function associated with problem (1.1) differs from the one
defined in (Dhar and Neugebauer, 2022). This type of Green's function was investigated
in (Dien and Nieto, 2022) in the context of nonlinear continuous fractional boundary
value problems.

Proposition 3.4. The Green's function given in Proposition 3.1 satisfies the following
properties:
(i) G(t,7) = 0,
(ii) G, (t,7) = 0(1 < 7 <t < b). It follows that
(Int)*1

max G(t,t) = max

~ 7 @ _ y
1<t<t<b te[1,b] (ln b)a—)/—l (ln b) .

Proof. For 1 <t <1 < b, (i) is obviously true.
for1 <7 <t < b, We study the function

a-1
G(t, T) B (ln t)a—l (ln %)

- In b))%~ -1 a-y—-1’
WDy

By direct computation, we obtain

(lng)m a—-1 a-y-1

T (ln ?)a—y—l

SinceyZOandlSTStSb,wehavea—l2a—y—1véln§21n§20.lt

follows that G, (t, 7) = 0. From the monotonicity of the function, we conclude that
G (t, 1) is increasing with respect to T hence

G.(t, 1) =

)

t b
ln? ll’l?

G(t,1t)=G6G(t1)=0
and

(Int)*1

G(t,T) < G(t, t) = W.

It follows that

1 ta—l 1 ba—l
max G(t,7) = max (n) __(nb)

1<t<ts<b te[1,b] (ln b)a—y—l (ln b)a’_]/—l (ll’l b) .

The proof of Proposition is completed.

O
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3.2. Lyapunov-type inequality

In this section, we introduce a Lyapunov-type inequality for problem (1.1).
Theorem 3.5. Assume that there exists a function q: [1,b] - R such that

If (&, W] = q(©)ul,
forallt € (1,b). Let p(t) =+ (In ?)H_l q(6). Ifp(.) € I1(1, b) and problem (1.1) has

a nontrivial solution, then

[H08) " a0z i

Proof. From Proposition 3.1, if problem (1.1) has a nontrivial solution, then

1 b a-y-1
w0 55 | (m—) Gt DI |f (o, u(D)|dr
In b)Y p\* vt
< (;‘(03 —(1 —) 4@ u@]d
In b)Y -1
_(F“(; lul j ().

The inequality just obtained implies that

n b)Y -1
< o [ 2 (n2) acorar

Hence, we obtain

[ 3 ()

This completes the proof of Theorem 3.5.

a-y—-1

b1/ b\*! T(@)
q(r)drzfl ?(ln;> q(t)dt = (l by"

We have the following consequences of the Lyapunov-type inequality:
Corollary 3.6. Assume that there exists a function q: (1,b] = R, such that

If & w| < q(@®)]ul,
forallt € (1,b]. Let p(t) = %(ln g)a_y_l q(®). If p(-) € L*(1, b) and inequality

[0 awa< i

is satisfied, then problem (1.1) admits no nontrivial solution.

Proof. Assume that the problem has a nontrivial solution. Then, by Theorem 3.5, we have

Lb%(lng)a_y 1 q(O)dt =7 (b;’

This contradicts the assumption. Therefore, the problem has no nontrivial solution.

O
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Corollary 3.7. Assume that A is an eigenvalue of the problem

{HD“u(t) =u,1<t<b,

u(1) = p%y(1) =..= #p%-24(1) = “DYu(b) =0,
then

Proof- A is an eigenvalue, which means that the problem has a nontrivial solution u,
applying Theorem 3.5 for q(t) = |A|, we obtain

b1, p\*V I'(a)
f —(m—) IAlde >
1 t

t (nb)"’
hence
(nb)yer|2] = 9
a—y (Inb)Y
The final inequality implies
Al > (@ - ia)
(Inb)“

This completes the proof of the corollary.
O
3.3. Existence and uniqueness result via Banach's fixed point theorem

In this section, we present a result on the existence and uniqueness of the solution to
problem (1.1). More precisely, we have the following theorem:

Theorem 3.8. Assume that f is a Lipschitz continuous function, that is, there exists a
constant K > 0 such that

|f(t,u) = f(t,v)| < Klu -], (3.2)
forallt € [1,b]vau,v € R If
K(Inb)“

—( ) <1,

I'(@)(a—-vy)
holds, then problem (1.1) has a unique solution in C[1, b].
Proof. Let B be the space of continuous functions on [1, b] equipped with the norm

lull = max (Ol
If u(t) is a solution of problem (1.1), then u(t) satisfies the integral equation

1 (1, p\*!
u(t) = mfl ;(ln;) G(t, r)f(r,u(r))dr.
We define the operator T: B — B is defined by

a-y—-1

1 (P1/ b
Tu) =t fl ;(m;) G(t, D f (1,u(®))dr.
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Then T is completely continuous. We show that T has a unique fixed point in B. Indeed,
for all u, v € B, we have

a-y—1

b b
|Tu(t) — Tv(t)| < F(l 3, 1 (ln ) |G(t, T)||f(‘r,u(r)) —f(r,v(r))|dr.

Given that G(t,7) = 0 trén [1, b] X [1, b], and by applying condition (3.2), it follows that

K (P17 bh\* 7!
|Tu(t) — Tv(t)|< mf - ln— G(t,t)|u(t) —v(r)|dt
-1
< F( ||u — vllj ln G(t, 7)dr.
Applying Proposition 3.4, we obtain
K b1 @t
|Tu(t) —Tv(t)| < Mo )||u—v||(lnb)yj1 ;(ln;) dt
(Inb)*~Y
) llu = v||(In b)y—y
K(In b)*
“T@@-p
This inequality implies
ITu(®) = To(O)] < Xy — .
I (a—y)
Since FI((OEI)IEQO;) < 1, the last inequality shows that T is a contraction mapping in the space

C[1, b]. Therefore, T has a unique fixed point, which implies that problem (1.1) has a
unique solution in C[1, b].

O

4. Examples

In this section, we present some concrete examples to illustrate the theoretical results
obtained above.

Example 4.1. Prove that problem
{HDZ'gu(t) =32(Int) % sinu(t), 1<t<2,
u(1l) = #ptiu(1) = #pdu(2) =0,
admits a unique solution u(t) = 0 for all t € [1,2].
Proof. Letb = 2,a = 2.9,y, = 1.1,y = 1.5 and f(¢t,u) = 3.2(Int)~%°sin u(t).
Clearly, u(t) = 0 for all t € [1,2] is a solution of the given problem. We will show that

this problem admits only the above unique solution. Using the inequality |sin x| < |u|
for all u, we obtain

If (t, W] < q@]ul,
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where
q(t) = 3.2(Int)%5, t € (1,2].

Indeed, we have

a-y—1

I= flb%(lng) q(t)dt

0.4

21

= 3.2f —(ln—) (Int)~%5 dt
AN
2

=32 f (In2 — In £)%4(In £)~°% d(In t).
1

Letv =Int, so that dv = % dt, Substituting this change of variable into the integral, we

obtain
In2
I = 3.2] (In2 — v)%4p=05 dy,
0

Next, let v = xIn 2, so that dv = In 2 dx, Substituting this change of variable into the
integral, we obtain

1
1= 3.2[ (In2 — xIn2)%*(xIn2)7%5(In 2)dx
0

1
= 3.2(In 2)1*04-03 j (1 —x)%*x~%% dx
0

= 3.2(In 2)*°B(1.4,0.5)

I'(1.4)1'(0.5)
=3.2(In2)%° ——
O A T
~ 3.83.
Moreover, we also have
I'(a 2.9
(@) = (2.9) =~ 3.916.

(Inb)Y  (In2)15
Hence, we obtain

I'(a)
(Inb) -

b
j (b —t)* Y 1g(t)dt ~ 3.83 < 3.916 ~
1

The inequality above confirms that the assumption in Corollary 3.6 holds. It follows that
the given problem has the unique solution u(t) = 0 for all t € [1,2].

O
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Example 4.2. Show that the absolute value of every eigenvalue of problem

{HD”u(t) = Au(t), 1<t<b,
u(1) = “Dp%u(2) =0,

is greater than 2.

Proof- We have b = 2, = 1.7,y = 0.5. By Corollary 3.7, we have

a—y)I'(a
] > (a —y)I'(a)
(Inb)«
(1.7 = 0.5)r(.7)
(In2)%7
=~ 2.014 > 2.
This completes the proof.
O
Example 4.3. Prove that problem
0.3tu(t)
HplSy(t) = ————=, te€(1,e),
w® =120 (1)
u(1) = #p%3u(e) = 0,
has a unique solution on C[1, e].
Proof. Let f(t,u) = %, for all u, v € R, we have
F(ew) (6, v)] = 0.3tu 0.3tv
ARG 14+u2 1+ v2
— 03] | 1—uv
R [CPRYE TC D)
2 2
1+4 ; v
< 0.3t|lu—
< 03t —vliE A 709
= 0.3¢| | ! + !
-t T2 + v
< 0.3t|u —v|.

Since 0.3t < 0.3e < 1, the function f (¢, u) satisfies the Lipschitz condition with respect
to u with Lipschitz constant K = 0.3e. On the other hand, for « = 1.5,y = 0.3,b = ¢,
we have

K(nb)*  03e(lne)'

@la—y) TA5as-13) = »/67<L

The above inequality shows that the condition in Theorem 3.8 is satisfied. Consequently,
we conclude that the given problem has a unique solution.

O
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5. Concluding remarks

Fractional differential equations have recently attracted significant research interest. In
this paper, we have established a Lyapunov-type inequality for a boundary value problem
involving the Hadamard fractional derivative and obtained results concerning the
existence and uniqueness of its solution. In future work, we aim to investigate Lyapunov-
type inequalities for differential equations involving other types of fractional derivatives,
such as the Caputo and Grunwald-Letnikov derivatives.
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