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Abstract 

In this paper, we consider a boundary value problem involving the 

Hadamard fractional derivative. We establish a Lyapunov-type 

inequality for the problem by constructing the green function and 

analyzing its properties. Next, we employ a fixed-point theorem to 

obtain the existence and uniqueness of the solution to the problem. 

The paper concludes with three examples that illustrate the theoretical 

results.  
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1. Introduction   

1.1. Background and literature 

Recently, boundary value problems involving fractional-order derivatives have 

attracted considerable attention and extensive research due to their wide range of 

applications in various fields such as physics, mechanics, biology, engineering, signal 

processing, etc. "Investigating the properties of solutions, including existence, 

eigenvalue estimates, and Lyapunov-type inequalities, plays a crucial role”. Therefore, 

investigating the properties of boundary value problems involving different types of 

fractional derivatives is significant both in theory and in practical applications. 

Fractional derivatives and several related problems are introduced in the book (Kibas et 

al, 2006; Miller and Ross, 1993). 

Boundary value problems involving Hadamard fractional derivatives have also been 

presented in (Benhamida et al, 2018; He et al 2022). However, in these studies, the order 

of the derivative 𝛼 is relatively small (typically 𝛼 ∈ (1,2]). Hence, extending the 

research to problems with more general fractional orders is necessary. 

A Lyapunov-type inequality was investigated in (Dien, 2021) and by several other 

authors mentioned in (Ntouyas et al, 2022). However, the inequality for the problem 

with general fractional boundary conditions involving the Hadamard derivative has not 

yet been thoroughly studied. 
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1.2. The aim of the paper  

Motivated by the above reasons, in this paper, we establish a Lyapunov-type inequality 

for a general fractional boundary value problem involving the Hadamard fractional 

derivative of arbitrary order. More specifically, with 𝑛 ≥ 2, 𝑛 − 1 < 𝛼 ≤ 𝑛 và 𝑛 − 2 ≤
𝛾 ≤ 𝑛 − 1, let 𝛼 − 𝑛 + 𝑘 ≤ 𝛼𝑘 < 𝛼 − 𝑛 + 𝑘 + 1 for 𝑘 = 1,2, . . , 𝑛 − 2, we consider the 

following problem: 

{
 𝐻𝐷𝛼𝑢(𝑡) = 𝑓(𝑡, 𝑢(𝑡)), 1 < 𝑡 < 𝑏,

𝑢(1) =  𝐻𝐷𝛼1𝑢(1) =. . =  𝐻𝐷𝛼𝑛−2𝑢(1) =  𝐻𝐷𝛾𝑢(𝑏) = 0.
(1.1) 

We construct the Green's function for problem (1.1), derive an upper bound estimate for 

this Green's function, establish a Lyapunov-type inequality, and present a result on the 

existence and uniqueness of the solution to problem (1.1). 

 

2. Preliminaries 

In this section, we present the notations, definitions, and preliminary concepts that will 

be used throughout the remainder of the paper. 

We begin by introducing the concepts and some properties related to the Hadamard 

fractional integral and derivative. These concepts and properties have been presented in 

various references, such as (Benhamida et al, 2018; He et al 2022). 

Definition 2.1. The Hadamard fractional integral of order 𝛼 of a function: [1, +∞) →
ℝ is defined by 

𝐼𝛼ℎ(𝑡) =
1

Γ(𝛼)
∫  
𝑡

1

(ln
𝑡

𝑠
)
𝛼−1 ℎ(𝑠)

𝑠
d𝑠, 𝛼 > 0. 

Definition 2.2. The Hadamard fractional derivative of order 𝛼 of a function ℎ on the 

interval [1, +∞) is defined by 

 𝐻𝐷𝛼ℎ(𝑡) =
1

Γ(𝑛 − 𝛼)
(𝑡
d

d𝑡
)
𝑛

∫  
𝑡

1

(ln
𝑡

𝑠
)
𝑛−𝛼−1 ℎ(𝑠)

𝑠
d𝑠, 𝑛 − 1 < 𝛼 < 𝑛. 

Lemma 2.3. Let 𝛼 ≥ 0. Then, the differential equation 

 𝐻𝐷𝛼ℎ(𝑡) = 0, 

has the general solution 

ℎ(𝑡) =∑  

𝑛

𝑗=1

𝑐𝑗(ln 𝑡)
𝛼−𝑗, 

moreover 

𝐼𝛼𝐻𝐷𝛼ℎ(𝑡) = ℎ(𝑡) +∑  

𝑛

𝑗=1

𝑐𝑗(ln 𝑡)
𝛼−𝑗. 

http://www.tdmujournal.vn/


Thu Dau Mot University Journal of Science  ISSN (print): 1859-4433; (online): 2615-9635 

www.tdmujournal.vn                                                                                             Page 973 

 

Lemma 2.4. If 𝛼 > 0, 𝛽 > 0 and 0 < 𝑎 < ∞, then 

𝐼𝛽 (ln
𝑡

𝑎
)
𝛼−1

(𝑥) =
Γ(𝛼)

Γ(𝛼 + 𝛽)
(ln

𝑥

𝑎
)
𝛼+𝛽−1

 

and 

 𝐻𝐷𝛽 (ln
𝑡

𝑎
)
𝛼−1

(𝑥) =
Γ(𝛼)

Γ(𝛼 − 𝛽)
(ln

𝑥

𝑎
)
𝛼−𝛽−1

. 

Next, we introduce the contraction mapping principle in a Banach space. This is a well-

known result that has been presented in many references, such as (Zeidler, 1986). 

Proposition 2.5.  (Banach's contraction mapping principle). Let ( 𝑋, ‖ ⋅ ‖𝑋 ) be a Banach 

space and let 𝛺 be a closed subset of 𝑋. Suppose that 𝑃:𝛺 → 𝛺 satisfies the condition, 𝑘 ∈
(0,1) 

‖𝑃(𝑢) − 𝑃(𝑣)‖𝑋 ≤ 𝑘‖𝑢 − 𝑣‖𝑋 , ∀𝑢, 𝑣 ∈ 𝛺. (2.1) 

Then, there exists a unique fixed point of 𝑃 in 𝛺, that is, there exists a unique element 

𝑢0 ∈ 𝛺 such that 𝑃(𝑢0) = 𝑢0. 

 

3. Main results  

3.1. Green's function 

In this section, we introduce the Green's function of problem (1.1). In addition, we provide 

an upper bound estimate for this Green's function. 

Proposition 3.1. If 𝑢 is a solution of problem (1.1), then 𝑢 satisfies the following 

equation: 

𝑢(𝑡) =
1

Γ(𝛼)
∫  
𝑏

1

1

𝜏
(ln

𝑏

𝜏
)
𝛼−𝛾−1

𝐺(𝑡, 𝜏)𝑓(𝜏, 𝑢(𝜏))d𝜏, 

where 

𝐺(𝑡, 𝜏) =

{
 
 

 
 (ln 𝑡)𝛼−1

(ln 𝑏)𝛼−𝛾−1
−

(ln
𝑡
𝜏)
𝛼−1

(ln
𝑏
𝜏)

𝛼−𝛾−1 , 1 ≤ 𝜏 ≤ 𝑡 ≤ 𝑏,

(ln 𝑡)𝛼−1

(ln 𝑏)𝛼−𝛾−1
, 1 ≤ 𝑡 ≤ 𝜏 ≤ 𝑏.

 

Proof. We use Lemma (2.3), the general solution of equation (1.1) has the form 

𝑢(𝑡) = 𝐼𝛼𝑓(𝑡, 𝑢(𝑡)) +∑  

𝑛−1

𝑘=0

  𝑐𝑘(ln 𝑡)
𝛼−𝑛+𝑘. (3.1) 
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At 𝑡 = 1, we obtain 𝑐0 = 0. Replacing 𝑐0 = 0 in (3.1), we have 

 𝐻𝐷𝛼𝑝𝑢(𝑡) = 𝐼𝛼−𝛼𝑝𝑓(𝑡, 𝑢(𝑡)) +∑  

𝑛−1

𝑘=𝑝

𝑐𝑘
Γ(𝛼 − 𝑛 + 𝑘 + 1)

Γ(𝛼 − 𝑛 + 𝑘 + 1 − 𝛼𝑝)
(ln 𝑡)𝛼−𝑛+𝑘−𝛼𝑝 . 

By successively applying the condition  𝐻𝐷𝛼𝑝𝑢(1) = 0 for 𝑝 = 1,2, . . , 𝑛 − 2, we obtain 

𝑐𝑝 = 0 for all 𝑝 = 1,2, . . , 𝑛 − 2. Finally, we also have 

 𝐻𝐷𝛾𝑢(𝑡) = 𝐼𝛼−𝛾𝑓(𝑡, 𝑢(𝑡)) + 𝑐𝑛−1
Γ(𝛼)

Γ(𝛼 − 𝛾)
(ln 𝑡)𝛼−𝛾−1. 

Since  𝐻𝐷𝑎+
𝛾
𝑢(𝑏) = 0, it is easy to see that 

𝑐𝑛−1 = −
Γ(𝛼 − 𝛾)

Γ(𝛼)(ln 𝑏)𝛼−𝛾−1
𝐼𝛼−𝛾𝑓(𝑡, 𝑢(𝑡))|

𝑡=𝑏

= −
1

Γ(𝛼)
∫  
𝑏

1

 
1

𝜏
(
ln
𝑏
𝜏

ln 𝑏
)

𝛼−𝛾−1

𝑓(𝜏, 𝑢(𝜏))d𝜏.

 

Substituting all the coefficients 𝑐𝑘 for 𝑘 = 1,2, . . , 𝑛 − 1 into (3.1), we obtain 

𝑢(𝑡)=
1

Γ(𝛼)
∫  
𝑡

1

 
1

𝜏
(ln

𝑡

𝜏
)
𝛼−1

𝑓(𝜏, 𝑢(𝜏))d𝜏

 −
1

Γ(𝛼)
∫  
𝑏

1

 
1

𝜏
(
ln
𝑏
𝜏

ln 𝑏
)

𝛼−𝛾−1

(ln 𝑡)𝛼−1𝑓(𝜏, 𝑢(𝜏))d𝜏

=
1

Γ(𝛼)
∫  
𝑡

1

 
1

𝜏
(ln

𝑡

𝜏
)
𝛼−1

𝑓(𝜏, 𝑢(𝜏))d𝜏

 −
1

Γ(𝛼)
∫  
𝑡

1

 
1

𝜏
(
ln
𝑡
𝜏

ln 𝑏
)

𝛼−𝛾−1

(ln 𝑡)𝛼−1𝑓(𝜏, 𝑢(𝜏))d𝜏

 −
1

Γ(𝛼)
∫  
𝑏

𝑡

 
1

𝜏
(
ln
𝑏
𝜏

ln 𝑏
)

𝛼−𝛾−1

(ln 𝑡)𝛼−1𝑓(𝜏, 𝑢(𝜏))d𝜏

=
1

Γ(𝛼)
∫  
𝑏

1

 
1

𝜏
(ln

𝑏

𝜏
)
𝛼−𝛾−1

𝐺(𝑡, 𝜏)𝑓(𝜏, 𝑢(𝜏))d𝜏,

 

where 

𝐺(𝑡, 𝜏) =

{
 
 

 
 (ln 𝑡)𝛼−1

(ln 𝑏)𝛼−𝛾−1
−

(ln
𝑡
𝜏)
𝛼−1

(ln
𝑏
𝜏)

𝛼−𝛾−1 , 1 ≤ 𝜏 ≤ 𝑡 ≤ 𝑏,

(ln 𝑡)𝛼−1

(ln 𝑏)𝛼−𝛾−1
, 1 ≤ 𝑡 ≤ 𝜏 ≤ 𝑏.
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 

Definition 3.2. The function 𝐺 in Proposition 3.1 is called the green function of the 

problem (1.1). 

Remark 3.3. The Green's function associated with problem (1.1) differs from the one 

defined in (Dhar and Neugebauer, 2022). This type of Green's function was investigated 

in (Dien and Nieto, 2022) in the context of nonlinear continuous fractional boundary 

value problems. 

Proposition 3.4. The Green's function given in Proposition 3.1 satisfies the following 

properties: 

(i) 𝐺(𝑡, 𝜏) ≥ 0, 

(ii) 𝐺𝜏(𝑡, 𝜏) ≥ 0(1 ≤ 𝜏 ≤ 𝑡 ≤ 𝑏). It follows that 

max
1≤𝜏≤𝑡≤𝑏

 𝐺(𝑡, 𝜏) = max
𝑡∈[1,𝑏]

 
(ln 𝑡)𝛼−1

(ln 𝑏)𝛼−𝛾−1
= (ln 𝑏)𝛾. 

Proof. For 1 ≤ 𝑡 ≤ 𝜏 ≤ 𝑏, (i) is obviously true. 

for 1 ≤ 𝜏 ≤ 𝑡 ≤ 𝑏, We study the function 

𝐺(𝑡, 𝜏) =
(ln 𝑡)𝛼−1

(ln 𝑏)𝛼−𝛾−1
−

(ln
𝑡
𝜏)
𝛼−1

(ln
𝑏
𝜏)

𝛼−𝛾−1, 

By direct computation, we obtain 

𝐺𝜏(𝑡, 𝜏) =
(ln

𝑡
𝜏)
𝛼−1

𝜏 (ln
𝑏
𝜏)

𝛼−𝛾−1(
𝛼 − 1

ln
𝑡
𝜏

−
𝛼 − 𝛾 − 1

ln
𝑏
𝜏

), 

Since 𝛾 ≥ 0 and 1 ≤ 𝜏 ≤ 𝑡 ≤ 𝑏, we have 𝛼 − 1 ≥ 𝛼 − 𝛾 − 1 và ln
𝑏

𝜏
≥ ln

𝑡

𝜏
≥ 0. It 

follows that 𝐺𝜏(𝑡, 𝜏) ≥ 0. From the monotonicity of the function, we conclude that 

𝐺(𝑡, 𝜏) is increasing with respect to 𝜏 hence 

𝐺(𝑡, 𝜏) ≥ 𝐺(𝑡, 1) = 0 

and 

𝐺(𝑡, 𝜏) ≤ 𝐺(𝑡, 𝑡) =
(ln 𝑡)𝛼−1

(ln 𝑏)𝛼−𝛾−1
. 

It follows that 

max
1≤𝜏≤𝑡≤𝑏

 𝐺(𝑡, 𝜏) = max
𝑡∈[1,𝑏]

 
(ln 𝑡)𝛼−1

(ln 𝑏)𝛼−𝛾−1
=

(ln 𝑏)𝛼−1

(ln 𝑏)𝛼−𝛾−1
= (ln 𝑏)𝛾. 

The proof of Proposition is completed. 

 
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3.2. Lyapunov-type inequality  

In this section, we introduce a Lyapunov-type inequality for problem (1.1). 

Theorem 3.5. Assume that there exists a function 𝑞: [1, 𝑏] → ℝ+ such that 

|𝑓(𝑡, 𝑢)| = 𝑞(𝑡)|𝑢|, 

for all 𝑡 ∈ (1, 𝑏]. Let 𝑝(𝑡) =
1

𝑡
(ln

𝑏

𝑡
)
𝛼−𝛾−1

𝑞(𝑡). If 𝑝(. ) ∈ 𝐿1(1, 𝑏) and problem (1.1) has 

a nontrivial solution, then 

∫  
𝑏

1

1

𝑡
(ln

𝑏

𝑡
)
𝛼−𝛾−1

𝑞(𝑡)𝑑𝑡 ≥
Γ(𝛼)

(ln 𝑏)𝛾
. 

Proof. From Proposition 3.1, if problem (1.1) has a nontrivial solution, then 

𝑢(𝑡)≤
1

Γ(𝛼)
∫  
𝑏

1

 
1

𝜏
(ln

𝑏

𝜏
)
𝛼−𝛾−1

|𝐺(𝑡, 𝜏)| |𝑓(𝜏, 𝑢(𝜏)|𝑑𝜏

≤
(ln 𝑏)𝛾

Γ(𝛼)
∫  
𝑏

1

 
1

𝜏
(ln

𝑏

𝜏
)
𝛼−𝛾−1

𝑞(𝜏)|𝑢(𝜏)|𝑑𝜏

≤
(ln 𝑏)𝛾

Γ(𝛼)
‖𝑢‖∫  

𝑏

1

 
1

𝜏
(ln

𝑏

𝜏
)
𝛼−𝛾−1

𝑞(𝜏)𝑑𝜏.

 

The inequality just obtained implies that 

‖𝑢‖ ≤
(ln 𝑏)𝛾

Γ(𝛼)
‖𝑢‖∫  

𝑏

1

1

𝜏
(ln

𝑏

𝜏
)
𝛼−𝛾−1

𝑞(𝜏)𝑑𝜏. 

Hence, we obtain 

∫  
𝑏

1

1

𝜏
(ln

𝑏

𝜏
)
𝛼−𝛾−1

𝑞(𝜏)d𝜏 = ∫  
𝑏

1

1

𝑡
(ln

𝑏

𝜏
)
𝛼−𝛾−1

𝑞(𝑡)d𝑡 ≥
Γ(𝛼)

(ln 𝑏)𝛾
. 

This completes the proof of Theorem 3.5. 

 

We have the following consequences of the Lyapunov-type inequality: 

Corollary 3.6. Assume that there exists a function 𝑞: (1, 𝑏] → ℝ+ such that 

|𝑓(𝑡, 𝑢)| ≤ 𝑞(𝑡)|𝑢|, 

for all 𝑡 ∈ (1, 𝑏]. Let 𝑝(𝑡) =
1

𝑡
(ln

𝑏

𝑡
)
𝛼−𝛾−1

𝑞(𝑡). If 𝑝(⋅) ∈ 𝐿1(1, 𝑏) and inequality 

∫  
𝑏

1

1

𝑡
(ln

𝑏

𝑡
)
𝛼−𝛾−1

𝑞(𝑡)d𝑡 <
Γ(𝛼)

(ln 𝑏)𝛾
, 

is satisfied, then problem (1.1) admits no nontrivial solution. 

Proof. Assume that the problem has a nontrivial solution. Then, by Theorem 3.5, we have 

∫  
𝑏

1

1

𝑡
(ln

𝑏

𝑡
)
𝛼−𝛾−1

𝑞(𝑡)d𝑡 ≥
Γ(𝛼)

(ln 𝑏)𝛾
. 

This contradicts the assumption. Therefore, the problem has no nontrivial solution. 

 
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Corollary 3.7. Assume that 𝜆 is an eigenvalue of the problem 

{
 𝐻𝐷𝛼𝑢(𝑡) = 𝜆𝑢, 1 < 𝑡 < 𝑏,

𝑢(1) =  𝐻𝐷𝛼1𝑢(1) =. . =  𝐻𝐷𝛼𝑛−2𝑢(1) =  𝐻𝐷𝛾𝑢(𝑏) = 0,
 

then 

|𝜆| ≥
(𝛼 − 𝛾)Γ(𝛼)

(ln 𝑏)𝛼
. 

Proof. 𝜆 is an eigenvalue, which means that the problem has a nontrivial solution 𝑢, 

applying Theorem 3.5 for 𝑞(𝑡) = |𝜆|, we obtain 

∫  
𝑏

1

1

𝑡
(ln

𝑏

𝑡
)
𝛼−𝛾−1

|𝜆|d𝑡 ≥
Γ(𝛼)

(ln 𝑏)𝛾
, 

hence 

1

𝛼 − 𝛾
(ln 𝑏)𝛼−𝛾|𝜆| ≥

Γ(𝛼)

(ln 𝑏)𝛾
. 

The final inequality implies 

|𝜆| ≥
(𝛼 − 𝛾)Γ(𝛼)

(ln 𝑏)𝛼
. 

This completes the proof of the corollary. 

 

3.3. Existence and uniqueness result via Banach's fixed point theorem 

In this section, we present a result on the existence and uniqueness of the solution to 

problem (1.1). More precisely, we have the following theorem: 

Theorem 3.8. Assume that 𝑓 is a Lipschitz continuous function, that is, there exists a 

constant 𝐾 > 0 such that 

|𝑓(𝑡, 𝑢) − 𝑓(𝑡, 𝑣)| ≤ 𝐾|𝑢 − 𝑣|, (3.2) 

for all 𝑡 ∈ [1, 𝑏] và 𝑢, 𝑣 ∈ ℝ. If 

𝐾(ln 𝑏)𝛼

Γ(𝛼)(𝛼 − 𝛾)
< 1, 

holds, then problem (1.1) has a unique solution in 𝐶[1, 𝑏]. 

Proof. Let 𝔹 be the space of continuous functions on [1, 𝑏] equipped with the norm 

‖𝑢‖ = max
𝑡∈[1,𝑏]

 |𝑢(𝑡)|. 

If 𝑢(𝑡) is a solution of problem (1.1), then 𝑢(𝑡) satisfies the integral equation 

𝑢(𝑡) =
1

Γ(𝛼)
∫  
𝑏

1

1

𝜏
(ln

𝑏

𝜏
)
𝛼−𝛾−1

𝐺(𝑡, 𝜏)𝑓(𝜏, 𝑢(𝜏))d𝜏. 

We define the operator 𝑇:𝔹 → 𝔹 is defined by 

𝑇𝑢(𝑡) =
1

Γ(𝛼)
∫  
𝑏

1

1

𝜏
(ln

𝑏

𝜏
)
𝛼−𝛾−1

𝐺(𝑡, 𝜏)𝑓(𝜏, 𝑢(𝜏))d𝜏. 
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Then 𝑇 is completely continuous. We show that 𝑇 has a unique fixed point in 𝔹. Indeed, 

for all 𝑢, 𝑣 ∈ 𝔹, we have 

|𝑇𝑢(𝑡) − 𝑇𝑣(𝑡)| ≤
1

Γ(𝛼)
∫  
𝑏

1

1

𝜏
(ln

𝑏

𝜏
)
𝛼−𝛾−1

|𝐺(𝑡, 𝜏)||𝑓(𝜏, 𝑢(𝜏)) − 𝑓(𝜏, 𝑣(𝜏))|d𝜏. 

Given that 𝐺(𝑡, 𝜏) ≥ 0 trên [1, 𝑏] × [1, 𝑏], and by applying condition (3.2), it follows that 

|𝑇𝑢(𝑡) − 𝑇𝑣(𝑡)|≤
𝐾

Γ(𝛼)
∫  
𝑏

1

 
1

𝜏
(ln

𝑏

𝜏
)
𝛼−𝛾−1

𝐺(𝑡, 𝜏)|𝑢(𝜏) − 𝑣(𝜏)|𝑑𝜏

≤
𝐾

Γ(𝛼)
‖𝑢 − 𝑣‖∫  

𝑏

1

 
1

𝜏
(ln

𝑏

𝜏
)
𝛼−𝛾−1

𝐺(𝑡, 𝜏)𝑑𝜏.

 

Applying Proposition 3.4, we obtain 

|𝑇𝑢(𝑡) − 𝑇𝑣(𝑡)| ≤
𝐾

Γ(𝛼)
‖𝑢 − 𝑣‖(ln 𝑏)𝛾∫  

𝑏

1

1

𝜏
(ln

𝑏

𝜏
)
𝛼−𝛾−1

 𝑑𝜏 

 =
𝐾

Γ(𝛼)
‖𝑢 − 𝑣‖(ln 𝑏)𝛾

(ln 𝑏)𝛼−𝛾

𝛼 − 𝛾

=
𝐾(ln 𝑏)𝛼

Γ(𝛼)(𝛼 − 𝛾)
‖𝑢 − 𝑣‖.

 

This inequality implies 

|𝑇𝑢(𝑡) − T𝑣(𝑡)| ≤
𝐾(ln 𝑏)α

Γ(α)(α − γ)
‖𝑢 − 𝑣‖. 

Since 
𝐾(ln 𝑏)α

Γ(α)(α−γ)
< 1, the last inequality shows that 𝑇 is a contraction mapping in the space 

𝐶[1, 𝑏]. Therefore, 𝑇 has a unique fixed point, which implies that problem (1.1) has a 

unique solution in 𝐶[1, 𝑏]. 

 

 

4. Examples 

In this section, we present some concrete examples to illustrate the theoretical results 

obtained above. 

Example 4.1. Prove that problem 

{
 𝐻𝐷2.9𝑢(𝑡) = 3.2(ln 𝑡)−0.5 sin 𝑢(𝑡),       1 < 𝑡 < 2,

𝑢(1) =  𝐻𝐷1.1𝑢(1) =  𝐻𝐷1.5𝑢(2) = 0,
 

admits a unique solution 𝑢(𝑡) = 0 for all 𝑡 ∈ [1,2]. 

Proof. Let 𝑏 = 2, 𝛼 = 2.9, 𝛾1 = 1.1, 𝛾 = 1.5 and 𝑓(𝑡, 𝑢) = 3.2(ln 𝑡)−0.5sin 𝑢(𝑡). 

Clearly, 𝑢(𝑡) = 0 for all 𝑡 ∈ [1,2] is a solution of the given problem. We will show that 

this problem admits only the above unique solution. Using the inequality |sin 𝑥| ≤ |𝑢| 

for all 𝑢, we obtain 

|𝑓(𝑡, 𝑢)| ≤ 𝑞(𝑡)|𝑢|, 
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where 

𝑞(𝑡) = 3.2(ln 𝑡)−0.5, 𝑡 ∈ (1,2]. 

Indeed, we have 

𝐼= ∫  
𝑏

1

 
1

𝑡
(ln

𝑏

𝑡
)
𝛼−𝛾−1

𝑞(𝑡)d𝑡

 = 3.2∫  
2

1

 
1

𝑡
(ln

2

𝑡
)
0.4

(ln 𝑡)−0.5 d𝑡

 = 3.2∫  
2

1

  (ln 2 − ln 𝑡)0.4(ln 𝑡)−0.5 d(ln 𝑡).

 

Let 𝑣 = ln 𝑡, so that d𝑣 =
1

𝑡
 d𝑡, Substituting this change of variable into the integral, we 

obtain 

𝐼 = 3.2∫  
ln 2

0

(ln 2 − 𝑣)0.4𝑣−0.5 d𝑣. 

Next, let 𝑣 = 𝑥 ln 2, so that d𝑣 = ln2 d𝑥, Substituting this change of variable into the 

integral, we obtain 

𝐼 = 3.2∫  
1

0

  (ln 2 − 𝑥 ln 2)0.4(𝑥 ln 2)−0.5(ln 2)d𝑥

 = 3.2(ln 2)1+0.4−0.5∫  
1

0

  (1 − 𝑥)0.4𝑥−0.5 d𝑥

 = 3.2(ln 2)0.9𝐵(1.4,0.5)

 = 3.2(ln 2)0.9
Γ(1.4)Γ(0.5)

Γ(1.9)

 ≈ 3.83.

 

Moreover, we also have 

Γ(𝛼)

(ln 𝑏)𝛾
=
Γ(2.9)

(ln 2)1.5
≈ 3.916. 

Hence, we obtain 

∫  
𝑏

1

(𝑏 − 𝑡)𝛼−𝛾−1𝑞(𝑡)d𝑡 ≈ 3.83 < 3.916 ≈
Γ(𝛼)

(ln 𝑏)𝛾
 . 

The inequality above confirms that the assumption in Corollary 3.6 holds. It follows that 

the given problem has the unique solution 𝑢(𝑡) = 0 for all 𝑡 ∈ [1,2]. 

 
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Example 4.2. Show that the absolute value of every eigenvalue of problem 

{
 𝐻𝐷1.7𝑢(𝑡) = 𝜆𝑢(𝑡), 1 < 𝑡 < 𝑏,

𝑢(1) =  𝐻𝐷0.5𝑢(2) = 0,
 

is greater than 2. 

Proof. We have 𝑏 = 2, 𝛼 = 1.7, 𝛾 = 0.5. By Corollary 3.7, we have 

|𝜆| ≥
(𝛼 − 𝛾)Γ(𝛼)

(ln 𝑏)𝛼

 ≥
(1.7 − 0.5)Γ(1.7)

(ln 2)1.7

 ≈ 2.014 > 2.

 

This completes the proof. 

 

Example 4.3. Prove that problem 

{
 𝐻𝐷1.5𝑢(𝑡) =

0.3𝑡𝑢(𝑡)

1 + 𝑢2(𝑡)
, 𝑡 ∈ (1, 𝑒),

𝑢(1) =  𝐻𝐷0.3𝑢(𝑒) = 0,

 

has a unique solution on 𝐶[1, 𝑒]. 

Proof. Let 𝑓(𝑡, 𝑢) =
0.3𝑡𝑢

1+𝑢2
, for all 𝑢, 𝑣 ∈ ℝ, we have 

|𝑓(𝑡, 𝑢) − 𝑓(𝑡, 𝑣)| = |
0.3𝑡𝑢

1 + 𝑢2
−
0.3𝑡𝑣

1 + 𝑣2
|

= 0.3𝑡|𝑢 − 𝑣| |
1 − 𝑢𝑣

(1 + 𝑢2)(1 + 𝑣2)
|

≤ 0.3𝑡|𝑢 − 𝑣| |
1 +

𝑢2 + 𝑣2

2
(1 + 𝑢2)(1 + 𝑣2)

|

= 0.3𝑡|𝑢 − 𝑣| |
1

2(1 + 𝑢2)
+

1

2(1 + 𝑣2)
|

≤ 0.3𝑡|𝑢 − 𝑣|.

 

Since 0.3𝑡 ≤ 0.3𝑒 < 1, the function 𝑓(𝑡, 𝑢) satisfies the Lipschitz condition with respect 

to 𝑢 with Lipschitz constant 𝐾 = 0.3𝑒. On the other hand, for 𝛼 = 1.5, 𝛾 = 0.3, 𝑏 = 𝑒, 

we have 

𝐾(ln 𝑏)𝛼

Γ(𝛼)(𝛼 − 𝛾)
=

0.3𝑒(ln 𝑒)1.5

Γ(1.5)(1.5 − 1.3)
≈ 0,767 < 1. 

The above inequality shows that the condition in Theorem 3.8 is satisfied. Consequently, 

we conclude that the given problem has a unique solution. 

 
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5. Concluding remarks  

Fractional differential equations have recently attracted significant research interest. In 

this paper, we have established a Lyapunov-type inequality for a boundary value problem 

involving the Hadamard fractional derivative and obtained results concerning the 

existence and uniqueness of its solution. In future work, we aim to investigate Lyapunov-

type inequalities for differential equations involving other types of fractional derivatives, 

such as the Caputo and Grunwald-Letnikov derivatives. 
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