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ABSTRACT 

In this article, a class of Hindmarsh-Rose model is studied. First, all necessary 

conditions for the parameters of system are found in order to have one stable 

fixed point which presents the resting state for this famous model. After that, using 

the Hopf’s theorem proofs analytically the existence of a Hopf bifurcation, which 

is a critical point where a system’s stability switches and a periodic solution 

arises. More precisely, it is a local bifurcation in which a fixed point of a 

dynamical system loses stability, as a pair of complex conjugate eigenvalues cross 

the complex plane imaginary axis. Moreover, with the suitable assumptions for 

the dynamical system, a small-amplitude limit cycle branches from the fixed point. 

 

Keywords: Hindmarsh-Rose model, fixed point, Hopf bifurcation, limit cycle 

 

1. Introduction 

In the beginning of 1980s, Hindmarsh J.L. and Rose R.M. studied a model called 

Hindmarsh-Rose model, to expose part of the inner working mechanism of the Hodgkin-

Huxley equations, a famous model in study of neurophysiology since 1952. The 

Hindmarsh-Rose model was introduced as a dimensional reduction of the well-known 

Hodgkin-Huxley model (Hodgkin A. L., and Huxley A. F., 1952; Nagumo J., et al., 1962; 
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Izhikevich E. M ., 2007; Ermentrout G. B., and Terman D. H ., 2009 ; Keener J. P., and 

Sney J., 2009 ; Murray J. D., 2010 ). It is constituted by two equations in two variables u  

and v . The first one is the fast variable called excitatory representing the transmembrane 

voltage. The second variable is the slow recovery variable describing the time dependence 

of several physical quantities, such as the electrical conductance of the ion currents across 

the membrane. The Hindmarsh-Rose equations (HR) are given by 

 

3 2

2

( , ) ,

( , ) ,

du
u f u v v au bu I

dt

dv
v g u v c du v

dt


     


     


  (1) 

where u  corresponds to the membrane potential, v  corresponds to the slow flux ions 

through the membrane, I  corresponds to the applied extern current, and , , ,a b c d  are 

parameters. Here, , , , ,I a b c d  are real numbers. 

The paper is organized as follows. In section 2, a study of fixed point is investigated and 

all necessary conditions for the parameters of Hindmarsh-Rose model are found in order 

to have a stable focus. In section 3, the system undergoes subcritical Hopf bifurcation is 

shown. And finally, conclusions are drawn in Section 4. 

 

2. A study of fixed points  

Equilibria or stability are tools to study the dynamic of fixed points. In mathematics, a 

fixed point of a function is an element of the function's domain that is mapped to itself 

by the function. This paper focuses on the fixed points of the system (1) given by the 

resolution of the following system 

3 2

2

( , ) 0 0

( , ) 0

f u v v au bu I

g u v v c du

     
 

   
 

It implies that 

3 2( ) 0.au d b u c I      (2)  

Let 
d b

a



  and 

c I

a



  . The equation (2) can be written 

3 2 0.u u     

To solve this equation, let's use the Cardan's formula after the following variables 

changes: 
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2 3

2 3

( ) 2( )
, , ,

3 3 27

d b d b d b c I
u p q

a a a a


   
       then 3 0.p q     

Let now 3 24 27 .p q    

If 0  , then the equation (2) admits only one root and hence the system (1) admits a 

unique fixed point. Now, if 0  , then the system (1) admits two fixed points, and 

finally if 0  , the system (1) admits three fixed points (see Figure 1).  

The Jacobian matrix of the system (1) is written as the following: 

2

( , ) ( , )

3 2 1
( ) .

( , ) ( , ) 2 1

f u v f u v

au buu v
A u

g u v g u v du

u v

  
     

    
      

 
  

 

Let ( *, *)u v  be one fixed point of (1), we have 

( ( *)Det A u 
2

I ) 2 ( ( *)) ( ( *)),Tr A u Det A u     

where 2( ( )) 3 6 1Tr A u au u     and 2( ( )) 3 4 .Det A u au u   

The reduced discriminant of ( ( ))Tr A u is 2' 3 .b a    If 2 3b a , then ( ( ))Tr A u  admits 

two real roots given by 

2

1

3

3 3
Tr

b b a b D
u

a a

  
  and 

2

2

3

3 3
Tr

b b a b D
u

a a

  
   with 2 3 .D b a   

Two roots of ( ( ))Det A u  is  

2

1

( ) ( )
2

3 3
Det

d b d b d b
u

a a

   
  


 and 

2

2

( ) ( )
0.

3
Det

d b d b
u

a

  
 


 

The nature of fixed points is rapported in Table 1. 

 

TABLE 1: Stability of fixed point 

 

If 2 3 ,b a  then ( ( )) 0Tr A u   for all values of u  and in this case, the fixed point is only 

stable focus or stable node. Morever, in this study, the model is needed to generate the 
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potential actions, it is necessary for the existence of a limit cycle. In the other word, it is 

need to have an unstable focus or a center. So the condition 2 3b a  is chosen to be in 

the region IV of Table 1. The infimum and superimum in the region IV are given by 

3

b D
L

a


  and .

3

b D
M

a


  

To observe the behavior of the system (1) like Figure 1, we fix the values of parameters 

as the following 1, 3, 1, 5, 0.a b c d I      Then, the system (1) becomes 

3 2

2

3

1 5

du
v u u

dt

dv
u v

dt


  


   


 (3) 

The system (3) has three fixed points: 

( 1.618033989, 12.090169948), ( 1, 4), (0.618033989, 0.909830058).A B C         

In Figure 1(a), we simulated two nullclines, 0u   in red and 0v   in green. The 

intersection point of these two nullclines is three fixed points , ,A B C  and one orbit of 

(3) is represented in blue and it is a limit cycle.  

 

Figure 1: Numerical results obtained for two nullclines 0u   in green and 0v   in blue. 

The intersection points are fixed points A, B and C. The red curve is the limit cycle.  

At the point ,A  we get ( ) 1.381966013Det A   and ( ) 18.562305903,Tr A    so A  is a 

stable node. At the point B , we get ( ) 1Det B    and ( ) 10Tr B   , hence B  is a 
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saddle. At the point ,C  we get ( ) 3.618033991Det C   and ( ) 1.562305899,Tr C   so C  

is a instable focus.  

 

3. existence and direction of hopf bifurcation  

This section focuses on the existence and the direction of Hopf bifurcation, which 

corresponds to the passage of a fixed point to a limit cycle under the effect of variation 

of a parameter. Recall the Hopf's theorem (Dang-Vu Huyen, and Delcarte C., 2000). 

Theorem 1. Consider the system of two ordinary differential equations 

( , , )

( , , )

u f u v a

v g u v a





 

 (4) 

Let ( *, *)u v  a fixed point of the system (4) for all a . If the Jacobian matrix of the 

system (4) at ( *, *)u v  admits two conjugate complex eigenvalues, 1,2( ) ( ) ( )a a iw a    

and there is a certain value ca a  such that 

( ) 0, ( ) 0c ca w a   and 
( )

( ) 0.c

a
a

a





 

Then, a Hopf bifurcation survives when the value of bifurcation parameter a  passes by 

ca  and ( *, *, )cu v a  is a point of Hopf bifurcation. Moreover, let 1c  in order that 

 

2 2 2 2 2 2

1 2 2 2 2

2 2 2 2 2 2 3 3 3 3

2 2 2 2 3 2 2 3

1

16 ( )

,

c

F G F F G G
c

w a u u u u v u u v

G G F F F G F F G G

v u v v u v v v u u v u v v

      
   

       

           
       
               

  (5)  

where F  and G  are given by the method of Hassard, Kazarinoff and Wan (Dang-Vu 

Huyen, and Delcarte C., 2000). 

We can distinguish different cases 

 

TABLE 2: Stability of the fixed points according to Hopf bifurcation 

  
1 0c   1 0c   

( ) 0ca
a





 

ca a  
stable equilibrium 

and no periodic orbit 

stable equilibrium 

and unstable periodic orbit 

ca a  
unstable equilibrium 

and stable periodic orbit 

unstable equilibrium 

and no periodic orbit 
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( ) 0ca
a





 

ca a  
unstable equilibrium 

and stable periodic orbit 

unstable equilibrium 

and periodic orbit 

ca a  
stable equilibrium 

and no periodic orbit 

stable equilibrium 

and unstable periodic orbit 

 

Now this theorem is applied to the Hindmarsh-Rose model in which a  represents the 

bifurcation parameter 

 

3 2

2

3

1 5

du
v au u I

dt

dv
u v

dt


   


   


 (6)  

Let ( *, *)u v  a fixed point of the system (6). Let 1 *u u u   and 1 *v v v  , then 

3 2

1 1 1 1 1 1

2

1 1 1 1 1

( , , ) ( *) ( *) 3( *)

( , , ) 1 5( *) ( *)

u f u v a v v a u u u u I

v g u v a u u v v


       


      

 

 

With a development of the functions f  and g  at the neighborhood of (0,0, )a , the 

above systems become 

1 1 1 1 1

1 1

1 1 1 1 1

1 1

(0,0, ) (0,0, ) ( , , )

(0,0, ) (0,0, ) ( , , )

f f
u u a v a F u v a

u v

g g
v u a v a G u v a

u v

 
    


    

  

 

where 1 1( , , )F u v a  and 1 1( , , )G u v a  are the nonlinear terms, then 

2

1 1 1 1 1

1 1 1 1 1

( 3 * 6 *) ( , , )

10 * ( , , )

u au u u v F u v a

v u u v G u v a


    


    

 

with 3 2

1 1 1 1( , , ) ( 3 * 3)F u v a au au u      and 2

1 1 1( , , ) 5 .G u v a u   

Now, (0,0, )a  is a fixed point of the system. The Jacobian matrix is given by 

23 * 6 * 1
.

10 * 1

au u
A

u

  
  

  
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The characteristic polynomial 

(Det A 
2

I ) 2 2 2(3 * 6 * 1) 3 * 4 *.au u au u        

Let ( ) ( )P a Tr A   and ( ) ( )Q a Det A . We get 

2 ( ) ( ) 0.P a Q a     

Hence, the Jacobian matrix admits a pair of conjugate complex eigenvalues if 

21
( ) ( )

4
Det A Tr A  and the above equation has the following roots 

1,2 ( ) ( ),a iw a    

with 
23 * 6 * 1

( )
2

au u
a

 
   and 2 2( ) 3 * 4 * ( )w a au u a   .  

Moreover, the value 
ca of a , for which the real part of these eigenvalues is null, is given 

by the equations ( ) 0cP a   and ( ) 0cQ a  , then 

2

6 * 1

3 *
c

u
a

u


  and 

4 1
* .

3 * 10
ca u

u


    

Moreover, 
23 *

( ) .
2

c

u
a

a


 


 

Thus, ( ) 0, ( ) 0c ca w a   and 
( )

( ) 0c

I
a

a





, then ca  is a bifurcation Hopf value of 

the parameter .a  

In the following, the direction and the stability of Hopf bifurcation are investigated. To 

do this, let’s determine an eigenvector 1v  associated with the eigenvalue 1 , obtained by 

resolving the system 

1(A 
2

I )
 

(1 10 * 1) 0
0

10 * 1 10 * 1 0

i u u vu

v u u i u v

      
   

       

 

A solution of this system is an eigenvector associated with 1  given by 

1

1
.

1 10 * 1
V

i u

 
  

   
 

The base change matrix is given by 
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 1 1

1 0
Re( ) Im( ) .

1 10 * 1
P V V

u

 
    

  
 

Then  

1 1 10 * 1 0
.

10 * 1 1 1

u
P

u


 

  
  

 

Now let the variable change 

1 2 2 11

1 2 2 1

.
u u u u

P P
v v v v

       
         

       
 

Hence 

2 1 2 2 21 1 1

2 2 2
2 1

( , , )
.

( , , )

u u u F u v a
P P AP P

v G u v av v

  

                             

 

Let 1
( ) ( )

'( ) .
( ) ( )

a w a
A a P AP

w a a






 

   
 

 Then, for ca a , it implies that 

2 2 2 2

2 2 2 2

( ) ( , , )0 ( )
'( )

( ) 0
( ) ( , , )

c cc

c

c
c c

u w a v F u v aw a
A a

w a
v w a u G u v a


    

   
    

 

with 

2 2 2 21

2 2 2 2

( , , ) ( , , )
.

( , , ) ( , , )

c c

c c

F u v a F u v a
P

G u v a G u v a


  
       

 

Then  

 

3 2

2 2 2 2

3 2

2 2 2 2

( , , ) ( 3 * 3)

1
( , , ) (3 * 2)

10 * 1

F u v a au au u

G u v a au au u
u

     



   


 

Let 1c  be given by the equation (5). The functions F  and G  depend only on 2u , the 

coefficient 1c  is given by 

2 2 3

1 2 2 3

2 2 2

1
(0,0, ) (0,0, ) (0,0, ).

16 ( )
c c c

c

F G F
c a a a

w a u u u

  
  

  
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At the point 
2 2( , ) (0,0)u v   and for 

ca a , it implies that ( ) 10 * 1cw a u  , and 

  

 

1

2 2

1 4
6 . 3 * 3 3 * 2

16 10 * 1 10 * 1

3
6 3 * * 2 .

4(10 * 1)

c c c

c c c

c a a u a u
u u

a a u a u
u

     
 

     


 

 Theorem 1 permits to deduce the direction and the stability of Hopf bifurcation from 

the signs of ( )ca
a




 and 1c . Now we apply this theorem in fixing all parameters values 

except the bifurcation parmaeter .a  Let 0,I   the system (6) becomes 

 

3 2

2

3

1 5

du
v au u

dt

dv
u v

dt


  


   


   (7)  

The fixed points are given by resolving the equation 3 22 1
0.u u

a a
    

Let 

2

2 3

2 4 16 1
, , ,

3 3 27
u p q

a a a a
       

then 3 0.p q     Let now 3 24 27 .p q    We choose arbitrarily one condition 

over ,a in order to have only a fixed point, it means 

4 2 4 2
0 ; ; .

3 3 3 3
a

   
             

   
 

With those values of ,a  we get 

 

 

 

 

2

32 2

11 1
32 23 6

11 1 2 1
32 23 6 3 3

11 1
32 23 6

9 27 32 27 3 16 3
*( )

32 3 9 27 32 27 3 16 3

22 3 9 27 32 27 3 16 3 42 3
.

3.2 3 9 27 32 27 3 16 3

a a a
u a

a a a a

a a a

a a a a

  


  

   


  
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Then, 
2

6 *( ) 1
.

3 *( )
c

u a
a

u a


  Moreover, 

ca  is solution of the equation 

     
2

6 *( ) 1
0.

3 *( )

u a
a

u a


    (8) 

 

 

Figure 2: (a) The resolution of the equation (8) gives two solutions over 

 10;10 , corresponding to the intersections with the abscisses axis. (b) We are 

interested in the case where 0,a  so  2.55165;2.5517ca    

 

The graphic resolution of the equation (8) gives two solutions over  10;10  (see Figure 

2(a)). Here, we are interested in the case where 0,a  so  2.55165;2.5517ca   (see 

Figure 2(b)). With these values of ,ca  we get 

 
2

2 2 51 1
* 0.54 , 3 * 4 * 4.392187794 3 * 6 * 1 1.526.10 .

10 4
c cu a u u a u u           

Moreover,  2 2

1

3
6 3 * * 2 15.632152 0.

4(10 * 1)
c c cc a a u a u

u
        


 

So, we have 1 0, ( ) 0.cc a
a


 


 From Theorem 1, 

   *, *, 0.54, 0.46, 2.551655c cu v a a    is a Hopf bifurcation point. Moreover, for 

,ca a  the fixed point is unstable with a stable periodic orbit; while for ,ca a  the fixed 

point is stable without periodic orbit (see Figure 3). Figure 3(a) shows the phase portrait in 

the plane ( , )u v  of the system (7) with 2.54,a   and a stable limit cycle for a value 

2.54 ca a  . Figure 3(b) presents the time series corresponding to ( , )t u . Figure 3(c) 

shows the phase portrait in the plane ( , )u v  of the system (7) with 2.57,a   and a focus 

stable for a value 2.57 ca I  . Figure 3(d) presents the time series corresponding to ( , ).t u  
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Figure 3: (a) Phase portrait in the plane ( , )u v  of the system (7) with 2.54,a   and a 

stable limit cycle for a value 2.54 ca a  . (b) Time series corresponding to ( , )t u . (c) 

Phase portrait in the plane ( , )u v  of the system (7) with 2.57,a  and a focus stable for a 

value 2.57 ca I  . (d) Time series corresponding to ( , )t u  

 

4. Conclusion 

This work showed the necessary conditions for the parameters of Hindmarsh-Rose 

model such that there exists only a stable fixed point. It represents the resting state in 

this system. The parameter a  is chosen like a bifurcation parameter, and when it crosses 

through the bifurcations values, then the equilibrium point loses its stability and 

becomes a limit cycle that implies the existence of a Hopf bifurcation. In this paper, the 

Hindmarsh-Rose model has one bifurcation value where there exists the subcritical 

Hopf bifurcation. The future work will be studied about the chaos properties in the 

Hindmarsh-Rose by adding some perturbation parameters. 
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