

Thu Dau Mot University Journal of Science ISSN 2615 - 9635 journal homepage: ejs.tdmu.edu.vn

The nice *m*-system of parameters for Artinian modules

by Nguyen Thi Khanh Hoa (Thu Dau Mot University)

Article Info:Received 02 Jan. 2020, Accepted 29 Feb. 2020, Available online 15 June. 2020
Corresponding author: hoanguyenthikhanh@gmail.comhttps://doi.org/10.37550/tdmu.EJS/2020.02.042

ABSTRACT

This paper restates the definition of the nice m-system of parameters for Artinian modules. It also shows its effects on the differences between lengths and multiplicities of certain systems of parameters for Artinian modules:

 $I\left(\underline{x}(\underline{n});A\right) = \ell_R\left(0:_A\left(x_1^{n_1}, x_2^{n_2}, \dots, x_d^{n_d}\right)R\right) - e\left(x_1^{n_1}, x_2^{n_2}, \dots, x_d^{n_d};A\right)$

In particular, if \underline{x} is a nice m-system of parameters then the function $I(\underline{x}(\underline{n}); A)$ is a polynomial having very nice form. Moreover, we will prove some properties of the nice m-system of parameters for Artinian modules. Especially, its effect on the annihilation of local homology modules of Artinian module A.

Keywords: annihilation, Artinian module, function of certain systems of parameters, local homology, nice m-system of parameters

1. Introduction

Throughout this paper, (R, m) is a commutative Noetherian local ring with the maximal ideal *m*, and *A* is an Artinian *R*-module with N-dimA = d.

+ The *R*-module $\lim_{t} Tor_i^R(R/m^t; A)$ is called ith-local homology module of *A* with respect to *m* and denoted by $H_i^m(A)$.

+ Let $\underline{n} = (n_1, n_2, ..., n_d)$ be a d-tuple of positive integers. For each system of parameters (s.o.p) $\underline{x} = (x_1, x_2, ..., x_d)$ of A, we consider

$$I\left(\underline{x}(\underline{n});A\right) = \ell_R\left(O:_A\left(x_1^{n_1}, x_2^{n_2}, \dots, x_d^{n_d}\right)R\right) - e\left(x_1^{n_1}, x_2^{n_2}, \dots, x_d^{n_d};A\right)$$

as a function d-variables on $n_1, n_2, ..., n_d$.

Let $I(A) = \sup_{x} I(\underline{x}; A)$ where \underline{x} runs over all s.o.p of A.

The value of function $I(\underline{x}; A)$ and the annihilation of local homology modules of A help us classify many different types of modules. Moreover, they also give us lots of information about different types of modules (see [3]). Such as:

+ I(A) = 0: A is a co-Cohen-Macaulay module.

+ $I(A) < \infty$: A is a Generalized co-Cohen-Macaulay module.

+ $I(\underline{x}; A)$ is a constant for all s.o.p of A: A is a co-Buchsbaum module.

+ If A is a Generalized co-Cohen-Macaulay module, there exists an *m*-primary ideal q such that $qH_i^m(A) = 0$ for all i = 1, ..., d - 1.

+ If A is a co-Buchsbaum module, $mH_i^m(A) = 0$ for all i = 1, ..., d-1.

However, $I(\underline{x}(\underline{n});A)$ may be not a polynomial on $n_1, n_2, ..., n_d$ even when $n_1, n_2, ..., n_d$ large enough (see [1]), but [2] has shown that if \underline{x} is a nice *m*-systems of parameters, $I(\underline{x}(\underline{n});A)$ is a polynomial with simple form. In addition, a nice s.o.p of A also annihilates local homology modules of A. Thus, in this paper we will restate the definition of the nice *m*-s.o.p for Artinian modules, the effect of the nice *m*-s.o.p on the calculation formula of function $I(\underline{x}(\underline{n});A)$ and continue studying some its properties. Especially its effect on the annihilation of local homology modules of A.

2. Preliminaries

Lemma 2.1([1]). Assume $(Ann_R A)\hat{R} = Ann_{\hat{R}}A$ and $\underline{x} = (x_1, x_2, ..., x_d)$ is a s.o.p of Artinian R-module A. Then, there exits $j \in \{1, 2, ..., d\}$ such that x_j is a pseudo-A-coregular element.

Nguyen Thi Khanh Hoa- Volume 2 - Issue 2-2020, p.158-165.

Lemma 2.2 ([3]). Let $x \in R$ be a pseudo-A-coregular element. Then $\ell_R(A/xA) < \infty$. Lemma 2.3 ([4]). Let M be an R-module, I be an ideal of R. Then for all $i \ge 0$,

$$\bigcap_{s>0} I^s H^I_i(M) = 0$$

Lemma 2.4 ([1]). Let s a positive integer such that $m^t A = m^s A$, $\forall t \ge s$. Then

$$H_0^m(A) = A/m^s A.$$

Lemma 2.5. ([3]). For every s.o.p \underline{x} of A, we have

$$\ell_R(0:_A \underline{x}R) - e(\underline{x};A) \leq \sum_{i=0}^{d-1} \binom{d-1}{i} \ell_R(H_i^m(A)).$$

Moreover, if $\ell_R(H_i^m(A)) < \infty$ for all i < d, then there exists an m-primary ideal q such that the equality holds for every s.o.p \underline{x} contained in q. Definition 2.6 ([2]).

* The sequence $x_1, ..., x_t \in m$ is called an m-sequence for A if:

(i)
$$x_k \notin \sum_{s \neq k} x_s R$$
 for all $k = 1, ..., t$,
(ii) $x_k \left(0 :_A (x_1, ..., x_{i-1}) R \right) = x_k x_i \left(0 :_A (x_1, ..., x_{i-1}) R \right)$ for all $1 \le i \le k \le t (x_0 = 0)$.

* The sequence $x_1, ..., x_t \in m$ is called a strong m-sequence for A if $x_1^{n_1}, ..., x_t^{n_t}$ is m-sequence for all $(n_1, ..., n_t) \in \square^{-t}$.

* A strong m-sequence $x_1, ..., x_t \in m$ is called a nice m-sequence for A if:

(*i*) *t* = 1; *or*

(ii) t > 1 and $x_1, ..., x_{i-1}$ is a strong m-sequence of $0:_A (x_i^{n_i}, ..., x_t^{n_t})R$ for all $2 \le i \le t$ and for all $n_i, ..., n_t \in \square$.

* A s.o.p for A is called a nice m-s.o.p if it is a nice m-sequence.

Lemma 2.7 ([2]). Let $x_1, ..., x_t$ be an m-sequence for A. Then:

(i)
$$x_i \left(0:_A (x_1, ..., x_{i-1}) R \right) = x_i^n \left(0:_A (x_1, ..., x_{i-1}) R \right)$$
 for all $1 \le i \le t$ and $n \in \square$;

(*ii*) for every (*i*, *k*) with $1 \le i \le k \le t$ we have

$$x_k\left(0:_A\left(x_1,\ldots,x_{i-1}\right)R\right)\subseteq x_i\left(0:_A\left(x_1,\ldots,x_{i-1}\right)R\right),$$

(iii) $x_2, ..., x_t$ is an m-sequence for $0:_A x_1$.

The following theorem shows that $I(\underline{x}(\underline{n});A)$ will be a polynomial when $\underline{x} = (x_1, x_2, ..., x_d)$ is a nice *m*-s.o.p for *A*. Furthermore, in this case it has a nice form.

Theorem 2.8 ([2]). Let $\underline{x} = (x_1, x_2, ..., x_d)$ be a s.o.p for A. Then the following three conditions are equivalent:

(i) \underline{x} is a nice m-s.o.p for A;

(ii) there exist non-negative intergers $\alpha_0(\underline{x}, A), ..., \alpha_{d-1}(\underline{x}, A)$ such that

$$I\left(\underline{x}(\underline{n});A\right) = \alpha_0(\underline{x},A) + \sum_{i=1}^{d-1} n_1 \dots n_i \cdot \alpha_i(\underline{x},A)$$

for all $n_1, ..., n_d \ge 1$;

(*iii*)
$$I(\underline{x}(\underline{n}); A) = \ell_R \left(\frac{0:_A(x_2, ..., x_d)R}{x_1(0:_A(x_2, ..., x_d)R)} \right) + \sum_{i=1}^{d-1} n_1 ... n_i . e^{\left(x_1, ..., x_i; \frac{0:_A(x_{i+2}, ..., x_d)R}{x_{i+1}(0:_A(x_{i+2}, ..., x_d)R)} \right)}$$

for all $n_1, ..., n_d \ge 1$.

3. Main results

In this section, we give some corollaries of Theorem 2.8.

Corollary 3.1. Let $x_1, x_2, ..., x_d$ be a nice m-s.o.p for A with N-dimA = $d \ge 2$. Then

i) For all $n_1, ..., n_d \in \square$ we have

$$I(x_1^{n_1}, x_2^{n_2}, ..., x_d^{n_d}; A) = I(x_1^{n_1}, x_2^{n_2}, ..., x_d; A).$$

ii) For all $n_2, ..., n_d \in \square$ we have

$$I(x_2^{n_2},...,x_d^{n_d};0:_A x_1) = I(x_1,x_2^{n_2},...,x_d^{n_d};A).$$

Proof.

i) From (iii) of Theorem 2.8, we find that $I(x_1^{n_1}, x_2^{n_2}, ..., x_d^{n_d}; A)$ doesn't depend on n_d . So we have

Nguyen Thi Khanh Hoa- Volume 2 - Issue 2-2020, p.158-165.

$$I(x_1^{n_1}, x_2^{n_2}, ..., x_d^{n_d}; A) = I(x_1^{n_1}, x_2^{n_2}, ..., x_d; A).$$

ii) For any $(n_2, ..., n_d) \in \square^{d-1}$, we have

$$I(x_{2}^{n_{2}},...,x_{d}^{n_{d}};0:_{A}x_{1})=I(x_{1},x_{2}^{n_{2}},...,x_{d}^{n_{d}};A)-e(x_{2}^{n_{2}},...,x_{d}^{n_{d}};A/x_{1}A).$$

Because $x_1, x_2, ..., x_d$ is an *m*-sequence, by Lemma 2.7 we have $x_2^{n_2}A \subseteq x_2A \subseteq x_1A$. Hence, $x_2^{n_2}(A/x_1A) = 0$. So that $e(x_2^{n_2}, ..., x_d^{n_d}; A/x_1A) = 0$.

This deduce $I(x_2^{n_2},...,x_d^{n_d};0:A_x_1) = I(x_1,x_2^{n_2},...,x_d^{n_d};A).$

Next, we give some example for nice *m*-s.o.p.

Remark 3.2.

i) Let A be an co-Cohen-Macaulay R-module. Then every s.o.p of A is a nice m-s.o.p.

ii) Let A be an co-Buchsbaum R-module. Then every s.o.p of A is a nice m-s.o.p.

iii) Let A be an generalized co-Cohen-Macaulay R-module. Then there exists an *m*-primary ideal q such that every s.o.p contain in q is a nice m-s.o.p.

Proof.

i) As A is an co-Cohen-Macaulay module, $I(A) = \sup_{\underline{x}} I(\underline{x}; A) = 0$ with \underline{x} run over all s.o.p of A. From Theorem 2.8, we get \underline{x} is a nice *m*-s.o.p.

ii) As A is an co-Buchsbaum module, $I(\underline{x}; A)$ is a constant (not depending on s.o.p \underline{x} of A). From Theorem 2.8, we get \underline{x} is a nice *m*-s.o.p.

iii) As *A* is an generalized co-Cohen-Macaulay *R*-module, $\ell_R(H_i^m(A)) < \infty$ for all i < d. Thus, from Lemma 2.5 and Theorem 2.8, there exists an *m*-primary ideal *q* such that every s.o.p contain in *q* is a nice *m*-s.o.p.

Finally, we continue studying the effect of a nice m-s.o.p on the annihilation of local homology modules of A.

Proposition 3.3. Assume $(Ann_R A)\hat{R} = Ann_{\hat{R}}A$ and $\underline{x} = (x_1, x_2, ..., x_d)$ is a s.o.p and a strong m-sequence of Artinian R-module A. Then

$$x_j H_i^m(A) = 0 \text{ for all } 0 \le i < j \le d.$$

Proof. We proceed by introduction on d = N-dimA.

For d = 1 and let x_1 be a s.o.p of A. Because of A is an Artinian R-module, the system $\{m^t A\}$ is stationary, i.e there exists a positive interger s such that $m^t A = m^s A$, for all $t \ge s$.

It follows from Lemma 2.4 that $x_1 H_0^m(A) = x_1 A / m^s A$.

Since x_1 is *m*-sequence for *A* and $x_1A = x_1^s A$, we have $x_1A \subset m^s A$. This implies $x_1H_0^m(A) = 0$.

Assume that d > 1 and our assertion is true for all Artinian *R*-module of N-dim smaller than *d*.

First, we shall prove $x_j H_0^m(A) = 0$ for all $1 \le j \le d$. Similar proof in case d = 1, from Lemma 2.7, we get $x_j A \subset x_1 A = x_1^s A \subset m^s A$.

Next, we shall prove $x_i H_i^m(A) = 0$ for all $1 \le i < j \le d$.

According to Lemma 2.1 and Lemma 2.2, there exists $k \in \{1, ..., d\}$ such that x_k is a pseudo-A-coregular element and $\ell_R(A/x_kA) < \infty$. Since $x_1, x_2, ..., x_d$ is a s.o.p and a strong *m*-sequence of A, we have $x_kA \subset x_1A$. Thus $\ell_R(A/x_1A) < \ell_R(A/x_kA) < \infty$. This deduces that N-dim $(A/x_1A) \le 0$. So $H_i^m(A/x_1A) = 0$ for all i > 0.

The exact sequence $0 \rightarrow x_1 A \rightarrow A \rightarrow A/x_1 A \rightarrow 0$ generates the long exact sequence

$$\cdots \to H_{i+1}^m(A/x_1A) \to H_i^m(x_1A) \to H_i^m(A) \to H_i^m(A/x_1A) \to \cdots$$

Since $H_{i+1}^m(A/x_1A) = H_i^m(A/x_1A) = 0$ we have $H_i^m(x_1A) \cong H_i^m(A)$ for all i > 0. Moreover, because $x_1, x_2, ..., x_d$ is an *m*-sequence of *A*, we get $x_1A = x_1^nA$ for all n > 0. This deduces

$$H_i^m(A) \cong H_i^m(x_1A) \cong H_i^m(x_1^nA)$$
 for all $i, n > 0$.

Combining this result and the exact sequence $0 \rightarrow 0:_A x_1^n \rightarrow A \rightarrow x_1^n A \rightarrow 0$ we have the long exact sequence:

$$\cdots \to H_i^m(A) \xrightarrow{x_1^n} H_i^m(A) \xrightarrow{\Delta_i} H_{i-1}^m(0:A_X_1^n) \to H_{i-1}^m(A) \xrightarrow{x_1^n} H_{i-1}^m(A) \to \cdots$$

Nguyen Thi Khanh Hoa- Volume 2 - Issue 2-2020, p.158-165.

Since
$$Ker\Delta_i = \operatorname{Im} x_1^n = x_1^n H_i^m(A), \forall n > 0$$
 we have $\operatorname{Im} \Delta_i \cong \frac{H_i^m(A)}{Ker\Delta_i} = \frac{H_i^m(A)}{x_1^n H_i^m(A)}$

As $x_1, x_2, ..., x_d$ is a strong *m*-sequence of *A* then $x_2, ..., x_d$ is a strong *m*-sequence of $0:_A x_1^n$. Applying the inductive hypothesis for $0:_A x_1^n$ to have $x_j H_{i-1}^m (0:_A x_1^n) = 0$ for all $1 \le i < j \le d$. Therefore $x_j \operatorname{Im} \Delta_i = 0$. Combining this result and Lemma 2.3 we get

$$x_{j}H_{i}^{m}(A) \subseteq x_{1}^{n}H_{i}^{m}(A) \subseteq m^{n}H_{i}^{m}(A), \forall n > 0 \Longrightarrow x_{j}H_{i}^{m}(A) \subseteq \bigcap_{n>0} m^{n}H_{i}^{m}(A) = 0$$

Our proof is complete.

Corollary 3.4. Assume $(Ann_R A)\hat{R} = Ann_{\hat{R}} A$.

i) Let $x_1, x_2, ..., x_d$ be a s.o.p and strong m -sequence of A. Then

$$x_{j}H_{i}^{m}\left(0:_{A}\left(x_{1}^{n_{1}},...,x_{k}^{n_{k}}\right)\right)=0 \text{ for all } 0 \leq i, k < j \leq d.$$

ii) Let $x_{1}, x_{2},...,x_{d}$ be a nice m-s.o.p of A. Then

$$x_j H_i^m \left(0:_A \left(x_k^{n_k}, ..., x_d^{n_d} \right) \right) = 0 \text{ for all } 0 \le i < j < k \le d.$$

Proof.

i) Because $x_1, x_2, ..., x_d$ is a s.o.p and a strong *m*-sequence of *A*, $x_1^{n_1}, ..., x_k^{n_k}, x_{k+1}^{n_{k+1}}, ..., x_d^{n_d}$ is also a s.o.p and an *m*-sequence of *A* for all $n_1, n_2, ..., n_d \in \Box$. Therefore $x_{k+1}, ..., x_d$ is a s.o.p and a strong *m*-sequence of $0:_A (x_1^{n_1}, ..., x_k^{n_k})$.

By Proposition 3.3, we have $x_j H_i^m \left(0:_A \left(x_1^{n_1}, ..., x_k^{n_k} \right) \right) = 0$ for all $0 \le i, k < j \le d$.

ii) Because $x_1, x_2, ..., x_d$ is a nice s.o.p, $x_1, ..., x_{k-1}$ is also a s.o.p and a strong *m*-sequence of $0:_A(x_k^{n_k}, ..., x_d^{n_d})$ for all $n_k, ..., n_d \in \Box$.

By Proposition 3.3, we have $x_j H_i^m \left(0:_A \left(x_k^{n_k}, ..., x_d^{n_d} \right) \right) = 0$.

References

- N.D. Minh (2006). Least degree of polynomials certain systems of parameters for Artinian modules. Southeast Asian Bulletin of math, 30, 85-97.
- N.D. Minh, N.T.K. Hoa, T.T.Nam (2014). On polynomial property of a function certain systems of parameters for Artinian modules. *Kyushu Journal of Math*, 68(2), 239-248.
- N.T. Cuong, N.T.Dung and L.N. Nhan (2007). *Generalized co-Cohen-Macaulay and co-Buchsbaum modules, Algebra Colloquium*, Vol. 14, 265.
- N.T. Cuong and T.T. Nam (2001). The I-adic completion and local homology for Artinian modules. *Math.Proc. Cambridge Philos. Soc.* 131(1), 61-72.