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ABSTRACT
This paper is devoted to study a fractional equation involving Caputo-Katugampola
derivative with nonlocal initial condition. Unlike previous papers, in this paper, the
source function of problem is assumed having a singularity. We propose some reason-
able conditions such that the problem has at least one mild solution or has a unique
mild solution. The desired results are proved by using the Banach, Leray-Schauder and
Krasnoselskii fixed point theorems. Some examples are given to confirm our theoretical
findings.
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1 Introduction

The subject of fractional calculus has applications in diverse and widespread fields of science
and engineering such as physics, quantum mechanics, bioengineering, etc, we refer to (Podlubny,
1999; Samko, Kilbas and Marichev, 1987; Diethelm, 2010; Herrmann, 2014; Iomin, 2019; Magin,
2006; Tarasov, 2010; Uchaikin, 2013) and the references therein.

Study the existence is one of the important topics in fractional differential equations. There
are various papers that investigate on existence results for the fractional differential equations
with Caputo, Caputo-Hadamard, and Caputo-Katugampola derivative (Redhwan et al., 2019;
Hamad and Ntouyas, 2017; Benchohra et al., 2008; Gu et al., 2019; Da C. Sousa et al., 2016).
However, in the mentioned papers the authors have used the globally Lipschitz conditions, i.e.,

|f(t, x)− f(t, y)| ≤ k(t)|x− y|

or

|f(t, x)| ≤ k(t),
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where k is a continuous function in [0, T ]. Problems with source functions satisfy the following
non-globally Lipschitz conditions

|f(t, x)− f(t, y)| ≤ κt−p|x− y| or |f(t, x)| ≤ κt−q

is still not study. Besides, we can not find any paper deal with existence results for the problem
involving Caputo-Katugampola derivative with nonlocal initial condition.

Motivated by these reasons, the current paper consider the following problem with Caputo-
Katugampola derivative

CDα,ρ
0+ x(t) = f(t, x(t)), t ∈ (0, T ], α ∈ (0, 1), ρ > 0 (1.1)

subject to the nonlocal initial condition

x(0) =

∫ T

0

g(τ, x(τ)) dτ, (1.2)

where f, g ∈ C((0, T )× R,R).
In the next section, according to the Banach, Leray-Schauder and Krasnoselskii fixed point

theorems, we introduce three existence results for our problem.

2 Preliminaries

In this section, we introduce some notations, definitions and some essential lemmas which we
will use in the proof of main results of our paper.

We firstly set up some notations that use throughout the rest of the paper. For x ∈
C([0, T ],R), we denote the sup-norm by ||x|| := sup0≤t≤T |x(t)|. We also remind the Gamma
and Beta functions

Γ(p) =

∫ ∞
0

sp−1e−s ds, B(p, q) =

∫ 1

0

(1− s)p−1sq−1 ds, (p, q > 0).

Note that, we have the following identity

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
. (2.1)

Secondly, we present definitions of the integral Katugampola and Caputo-Katugampola
fractional derivative. These definitions readers can find in (R. Almeida, A. B. Malinowska and
T. Odzijewicz, 2016; R. Almeida, 2017) and the references therein. We start with defining the
Katugampola fractional integrals as follows.

Definition 2.1. Let α ∈ (0, 1), ρ > 0, 0 ≤ a < b < +∞, and let x be an integrable function
on [a, b]. The Katugampola fractional integrals is defined by

Iα,ρa+ x(t) =
ρ1−α

Γ(α)

∫ t

a

τ ρ−1

(tρ − τ ρ)1−αx(τ) dτ.

Now we define the Caputo-Katugampola fractional derivative.
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Definition 2.2. Let α ∈ (0, 1), ρ > 0, 0 ≤ a < b < +∞, and let x be an integrable function
on [a, b]. The Caputo-Katugampola fractional derivative is defined by

CDα,ρ
a+x(t) =

d

dt
I1−α,ρ
a+ =

ρα

Γ(1− α)
t1−ρ

d

dt

∫ t

a

τ ρ−1

(tρ − τ ρ)α
x(τ) dτ.

To end this section, we state and prove some essential lemmas which we will use in proof of
main results of our paper.

Lemma 2.3. Let α ∈ (0, 1), ρ > 0. If γ < 1 then∫ t

0

τ−γ

(tρ − τ ρ)1−α dτ =
1

ρ
B

(
α,

1− γ
ρ

)
tρ(α−1)+1−γ for any t ∈ [0, T ]

and ∫ t2

t1

τ−γ

(tρ2 − τ ρ)1−α dτ ≤ Ct
ρ(α−1)+1−γ
2 max

{(
1−

(
t1
t2

)ρ)α
, 1−

(
t1
t2

) 1−γ
ρ

}
,

where C = 1
ρ

max
{

1, (1/2)
1−γ
ρ
−1, (1/2)α−1

}
. Consequently, if ρ(α− 1) + 1− γ > 0 then

∫ t2

t1

τ−γ

(tρ2 − τ ρ)1−α dτ → 0 uniformly as t1 → t2 in [0, T ].

Proof. By putting s = (τ/t2)ρ and direct computation, we can easy to verify that∫ t2

tl

τ−γ

(tρ2 − τ ρ)1−α dτ =
1

ρ
t
ρ(α−1)+1−γ
2

∫ 1

(t1/t2)ρ
(1− s)α−1s

1−γ
ρ
−1 ds for any t1 < t2. (2.2)

This leads to the first result of Lemma. To get the second result, we divide into two cases, the
first case is (t1/t2)ρ ≥ 1/2 and the second case is (t1/t2)ρ < 1/2. By using (2.2), we obtain the
desired result.

Lemma 2.4. The problem (1.1) and (1.2) is equivalent to the integral equation

x(t) =

∫ T

0

g(τ, x(τ)) dτ +
ρ1−α

Γ(α)

∫ t

0

τ ρ−1

(tρ − τ ρ)1−αf(τ, x(τ)) dτ. (2.3)

Proof. Almeida et al (D.R.,1980) shown that the solution of the equation (1.1) with the initial
condition x(0) = x0 is equivalent to the Volterra integral equation

x(t) = x0 +
ρ1−α

Γ(α)

∫ t

0

τ ρ−1

(tρ − τ ρ)1−αf(τ, x(τ)) dτ.

By the nonlocal initial condition (1.2), we conclude that the problem (1.1) and (1.2) are equiv-
alent to the integral equation (2.3).

Remark 2.5. We note that the equation (2.3) is nonlocal, i.e, the integral is defined in all
interval [0, T ]. Therefore, we can not apply the technique that used in [?] to study the existence
solutions of our problem.
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Theorem 2.6. Let α ∈ (0, 1), ρ > 0. Let f, g ∈ C((0, T )× R,R). Suppose that there exist two
positive constants K1, K2, and two numbers p, q with p < αρ and q < 1 such that

|f(t, x)− f(t, y)| ≤ K1t
−p|x− y| and |g(t, x)− g(t, y)| ≤ K2t

−q|x− y|

for all u, v ∈ C([0, T ],R). If |f(t, 0)| ≤ Kt−r for some constants K > 0, r < αρ and

K1

ρ−αΓ
(
ρ−p
ρ

)
Γ
(
α + ρ−p

ρ

) +K2
T 1−q

1− q
< 1

then the problem (1.1)-(1.2) has a unique solution in C([0, T ],R).

Proof. For x ∈ C([0, T ],R), let us put

Fx(t) =

∫ T

0

g(τ, x(τ)) dτ +
ρ1−α

Γ(α)

∫ t

0

τ ρ−1

(tρ − τ ρ)1−αf(τ, x(τ)) dτ. (2.4)

For t2 > t1 and for each x ∈ C([0, T ],R) with ||x|| ≤ M , we have (tρ1 − τ ρ)1−α ≤ (tρ2 − τ ρ)1−α

and |f(t, x)| ≤ K1t
−p|x|+ |f(t, 0)| ≤ K1Mt−p +Kt−r. This deduces

|Fx(t1)− Fx(t2)| ≤ ρ1−α

Γ(α)

∫ t1

0

(
τ ρ−1

(tρ1 − τ ρ)1−α −
τ ρ−1

(tρ2 − τ ρ)1−α

)
|f(τ, x(τ))| dτ

+
ρ1−α

Γ(α)

∫ t2

t1

τ ρ−1

(tρ2 − τ ρ)1−α |f(τ, x(τ))| dτ

≤ ρ1−α

Γ(α)

∫ t1

0

τ ρ−1

(tρ1 − τ ρ)1−α

(
K1Mτ−p +Kτ−r

)
dτ

− ρ1−α

Γ(α)

∫ t2

0

τ ρ−1

(tρ2 − τ ρ)1−α

(
K1Mτ−p +Kτ−r

)
dτ

+
2ρ1−α

Γ(α)

∫ t2

t1

τ ρ−1

(tρ2 − τ ρ)1−α

(
K1Mτ−p +Kτ−r

)
dτ.

Using Lemma 2.3 with γ = p− ρ+ 1 and γ = r − ρ+ 1, we obtain

|Fx(t1)− Fx(t2)| ≤ K1Mρ−α

Γ(α)
B

(
α,
ρ− p
ρ

)(
tαρ−p2 − tαρ−p1

)
+

Kρ−α

Γ(α)
B

(
α,
ρ− r
ρ

)(
tαρ−r2 − tαρ−r1

)
+

2C1K1Mρ−α

Γ(α)
tρα−p2 max

{(
1−

(
t1
t2

)ρ)α
, 1−

(
t1
t2

) ρ−p
ρ

}

+
2C2Kρ

−α

Γ(α)
tρα−r2 max

{(
1−

(
t1
t2

)ρ)α
, 1−

(
t1
t2

) ρ−r
ρ

}
,

where C1, C2 independent of t1 and t2. Since r, p < αρ < ρ, the last inequality lead to

|Fx(t1)− Fx(t2)| → 0 (uniformly) as t1 → t2 on [0, T ]. (2.5)
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This shows that F is the mapping from C([0, T ],R) into itself.
Now, by direct computation, we have

|Fx(t)− Fy(t)|

≤ K2

∫ T

0

t−q|x(τ)− y(τ)| dτ +K1
ρ1−α

Γ(α)

∫ t

0

τ ρ−p−1

(tρ − τ ρ)1−α |x(τ)− y(τ)| dτ

≤ ||x− y||
(
K2

∫ T

0

t−q dτ +K1
ρ1−α

Γ(α)

∫ t

0

τ−(p−ρ+1)

(tρ − τ ρ)1−α dτ

)
.

We can use Lemma 2.3 with γ = p+ 1− ρ and the identity (2.1) to get that

|Fx(t)− Fy(t)| ≤
(
K1

ρ−α

Γ(α)
B

(
α,
ρ− p
ρ

)
tαρ−p +K2

T 1−q

1− q

)
||x− y||

=

K1

ρ−αΓ
(
ρ−p
ρ

)
Γ
(
α + ρ−p

ρ

)Tαρ−p +K2
T 1−q

1− q

 ||x− y||
This implies that F is contraction mapping in C([0, T ],R). Consequently, the problem (1.1)
and (1.2) has a unique solution in C([0, T ],R).

Theorem 2.7. Let α ∈ (0, 1), ρ > 0, and p < αρ, q < 1. Let f, g ∈ C((0, T )× R,R). Suppose
that there exist two positive and increasing functions ϕ, ψ : [0,+∞)→ [0,+∞), and two positive
constants K1, K2 > 0 such that

|f(t, x)| ≤ K1t
−pϕ(|x|), |g(t, x)| ≤ K2t

−qψ(|x|).

If there exists a positive constant Λ such that

Λ > K1ϕ(Λ)
ρ−αΓ

(
ρ−p
ρ

)
Γ
(
α + ρ−p

ρ

)Tαρ−p +K2ψ(Λ)
T 1−q

1− q
. (2.6)

Then, the problem (1.1)-(1.2) has at least one solution in C([0, T ],R).

Remark 2.8. If

ϕ(s) =
n∑
i=1

ais
pi , ψ(s) =

m∑
j=1

bjs
qj , (ai, bj ∈ R, pi, qj ∈ [0, 1))

then the assumption (2.6) holds.

Proof. Let us consider the operator F which defined in (2.4). Put

W = {z ∈ C([0, T ],R) : ||z|| ≤ Λ} .

We will show that F is completely continuous. In fact, we putM = T
1−q+ T ρα−p

ραΓ(α)
B(α, ρ−p

ρ
). For

any ε > 0, there exists δ > 0 such that tp|f(t, x(t))− f(t, y(t))| < ε/M and tq|g(t, x(t))− g(t, y(t))| <
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ε/M for any ||x− y|| < δ. Applying Lemma 2.3 with γ := ρ− 1, one has

|Fx(t)− Fy(t)| ≤
∫ T

0

|g(τ, x(τ))− g(τ, y(τ))| dτ

+
ρ1−α

Γ(α)

∫ t

0

τ ρ−1

(tρ − τ ρ)1−α |f(τ, x(τ))− f(τ, y(τ))| dτ

<
ε

M

(∫ T

0

t−q dτ +
ρ1−α

Γ(α)

∫ t

0

τ ρ−p−1

(tρ − τ ρ)1−α dτ

)
=

ε

M

(
T

1− q
+

T ρα−p

ραΓ(α)
B(α,

ρ− p
ρ

)

)
= ε

due to B(α, 1) = 1/α. This implies ||Fx− Fy|| < ε or F is continuous.
For x ∈ C([0, T ],R) with ||x|| ≤ E, applying Lemma 2.3 with γ = p − ρ + 1, and direct

computation, we have

|Fx(t)| ≤ K1
ρ1−α

Γ(α)

∫ t

0

ϕ(|x(τ)|) τ−(p−ρ+1)

(tρ − τ ρ)1−α dτ +K2

∫ T

0

ψ(|x(τ)|)τ−q dτ

≤ K1ϕ(E)
ρ−α

Γ(α)
B

(
α,
ρ− p
ρ

)
Tαρ−p +K2ψ(E)

T 1−q

1− q

= K1ϕ(E)
ρ−αΓ

(
ρ−p
ρ

)
Γ
(
α + ρ−p

ρ

)Tαρ−p +K2ψ(E)
T 1−q

1− q
. (2.7)

This shows that F is bounded. Lastly, similar to the proof of (2.5), we can prove that F is
equicontinuous. Consequently, F is compact operator.

We suppose that there exists x ∈ ∂W and λ ∈ (0, 1) such that x = λFx. Similarly the proof
of (2.7), we have

Λ = ||x|| = λ||Fx|| ≤ K1ϕ(Λ)
ρ−αΓ

(
ρ−p
ρ

)
Γ
(
α + ρ−p

ρ

)Tαρ−p +K2ψ(Λ)
T 1−q

1− q
.

The last inequality is contradiction with (2.6). Applying the nonlinear Leray-Schauder alterna-
tives fixed point theorem (A. Granas, 2003), we obtain the result of Theorem.

Theorem 2.9. Let α ∈ (0, 1), ρ > 0, p < αρ. Let f, g ∈ C((0, T ) × R,R). Suppose that there
exist three constants p < αρ, and q, r < 1 such that

|g(t, x)− g(t, y)| ≤ Kt−r|x− y| (2.8)

and
|f(t, x)| ≤ Pt−p, |g(t, x)| ≤ Qt−q

for some positive numbers K, P , Q and for any x, y ∈ C([0, T ],R). If

KT 1−r/(1− r) < 1 (2.9)

then the problem (1.1)-(1.2) has at least one solution in C([0, T ],R).
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Remark 2.10. The result of Theorem 2.9 holds if we replace the assumption (2.8) by

|f(t, x)− f(t, y)| ≤ Kt−r|x− y| and |f(t, 0)| ≤ Kt−r, (r < αρ)

and (2.9) by K
ρ−αΓ( ρ−rρ )
Γ(α+ ρ−r

ρ )
Tαρ−r < 1.

Proof. For x, y ∈ C([0, T ],R]), we define

Ax(t) =
ρ1−α

Γ(α)

∫ t

0

τ ρ−1

(tρ − τ ρ)1−αf(τ, x(τ)) dτ, By(t) =

∫ T

0

g(τ, y(τ)) dτ.

Let us put

D =

z ∈ C([0, T ],R) : ||z|| ≤ θ := P
ρ−αΓ

(
ρ−p
ρ

)
Γ
(
α + ρ−p

ρ

)Tαρ−p +Q
T 1−q

1− q

 .

By the same method that used in Theorem 2.6, we can verify that

|Ax(t1)− Ax(t2)| → 0 as t1 → t2.

Hence A is the mapping from (C[0, T ],R) into itself. Also, by the same manner in Theorem
2.7, we can prove that A is compact operator. Moreover, one has the following estimation

|Ax(t)| ≤ ρ1−α

Γ(α)

∫ t

0

τ ρ−1

(tρ − τ ρ)1−α |f(τ, x(τ))| dτ

≤ P
ρ1−α

Γ(α)

∫ t

0

τ ρ−p−1

(tρ − τ ρ)1−α dτ.

Applying Lemma 2.3 with γ = p− ρ+ 1, we obtain

|Ax(t)| ≤ P
ρ−αΓ

(
ρ−p
ρ

)
Γ
(
α + ρ−p

ρ

)Tαρ−p.
This implies

||Ax|| ≤ P
ρ−αΓ

(
ρ−p
ρ

)
Γ
(
α + ρ−p

ρ

)Tαρ−p. (2.10)

Obviously, B is a mapping from C([0, T ],R) into itself. We will verify that B is contraction.
Indeed, according to assumption (2.8), we have

|Bx(t)− By(t)| ≤
∫ T

0

|g(τ, x(τ))− g(τ, y(τ))| dτ

≤ K

∫ T

0

τ−r|x(τ)− y(τ)| dτ

≤ KT 1−r

1− r
||x− y||.
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Since KT 1−r

1−r < 1, the last inequality implies that A is contraction. On the other hand, we have
the estimation

|Bx(t)| ≤
∫ T

0

|g(τ, x(τ))| ≤ Q

∫ T

0

τ−q dτ =
QT 1−q

1− q
.

This implies

||Bx|| ≤ QT 1−q

1− q
. (2.11)

Combining the inequality (2.10) with (2.11), we obtain

||Ax+ By|| ≤ ||Ax||+ ||By|| ≤ P
ρ−αΓ

(
ρ−p
ρ

)
Γ
(
α + ρ−p

ρ

)Tαρ−p +
QT 1−q

1− q
= θ.

This shows that Ax+By ∈ D for any x, y ∈ D. Applying the Krasnoselskii fixed point theorem
(D.R., 1980), we obtain the desired result of Theorem.
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