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Abstract 

The theory of differential equations arises from the study of physical 

phenomena. This field has various applications in science and 

engineering. The study of qualitative properties for each mathematical 

model plays an important role, attracting the attention of both 

theoretical and applied researchers. Normally, the most significant 

qualitative property to be studied first is the existence and uniqueness 

of the solutions of each mathematical model. However, proving 

existence and uniqueness results for mathematical models where the 

source function has a singularity is a difficult problem and requires 

many different techniques. In this paper, we establish some new 

conditions suitable to achieve the unique solution criterion for 

ordinary first-order differential equations. To obtain the desired 

results, we have improved the methods that have been used to prove 

the results in the work of Krasnosel'skii and Krein (Krasnoselskii and 

Krein, 1956). In addition, we also provide an example to illustrate the 

theoretical results. 

Keywords: differential equations, lipschitz condition, uniqueness  
 

 

 

1. Introduction 

We consider the initial value problem 

                   {
𝑦′ = 𝑓(𝑥, 𝑦)
 𝑦(𝑥0) = 𝑦0

                                                                       (1) 

where the function f(x, y) is at least continuous in a domain 𝐷 ⊆ ℝ2, and (𝑥0, 𝑦0) ∈ 𝐷. 
By a solution of (1) in an interval J containing 𝑥0, we mean a function 𝑦(𝑥) satisfying: 

(i) 𝑦(𝑥0) = 𝑦0, 

(ii) for all 𝑥 ∈ 𝐽, the points (𝑥, 𝑦(𝑥)) ∈ 𝐷 

(iii) 𝑦′(𝑥) exists and continuous for all 𝑥 ∈ 𝐽 

(iv) 𝑦′(𝑥) =𝑓(𝑥, 𝑦(𝑥)). 

If J is closed then at the endpoints of J only the one-sided existence of 𝑦′(𝑥) is assumed. 

It is well known that the continuity of 𝑓(𝑥, 𝑦) in a closed rectangle  
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𝑆̅: |𝑥 −  𝑥0| ≤ 𝑎, |𝑦 − 𝑦0| ≤ 𝑏 

is sufficient for the existence of at least one solution of (1) in the interval  𝐽ℎ: |𝑥 − 𝑥0| ≤
ℎ = 𝑚𝑖𝑛(𝑎, 𝑏/𝑀), where 𝑀 = 𝑠𝑢𝑝𝑆̅|𝑓(𝑥, 𝑦)|. Although the continuity of 𝑓(𝑥, 𝑦) is 

sufficient for the existence of a solution of (1), it does not imply the uniqueness of the 

solutions.  

We know that the significance of uniqueness theorems in the study of initial value 

problems is well-known due to their relevance in establishing the well-posedness of the 

real-world problems arising in physical, and engineering systems. Uniqueness results play 

a significant role in the continuation of solutions and the theory of autonomous systems. 

Meanwhile, the uniqueness results almost always come with the cost of stringent 

conditions, they are valuable, for without such uniqueness results it is impossible to make 

predictions about the behavior of physical systems. Hence, there are many studies on 

sufficient conditions for the unique solution of differential equations. In particular, in 

cases where the source function does not satisfy the usual Lipschitz condition and 

contains a singularity, the conditions for the problem to have a unique solution often 

become more difficult.  

 

2. Literature Review 

The pioneering work of Nagumo (Nagumo, 1926) opened a new trend of studying the 

theory of differential equations in which source functions have singularities. In the 

mentioned work, the author showed that problem (1) where the source function satisfies 

the following condition 

                                                |𝑓(𝑥, 𝑦) − 𝑓(𝑥, 𝑦̅)| ≤ 𝐾|𝑦 − 𝑦̅|−1                          (2)  

has at most one solution. Continuously the work of Nagumo, there are many uniqueness 

criteria have been proposed (e.g., Athanassov, 1990; Biles and Spraker, 2014; Ferreira, 

2013; Gard, 1978; Constantin, 2010; Markus, 1953; Mejstrik, 2012; Yifei and Mei, 2010).  

Krasnoselskii and Krein (1956), the authors considered the problem (1) with the source 

function satisfying the condition (2) and proved that if  

                                                    |𝑓(𝑥, 𝑦) − 𝑓(𝑥, 𝑦̅)| ≤ 𝐾|𝑦 − 𝑦̅|𝛼                               (3) 

then the problem has a unique solution.  It is worth noting that condition (3) implies that 

the source function may not have a singularity. To the best of our knowledge, the source 

function satisfies the weaker condition as follows 

|𝑓(𝑥, 𝑦) − 𝑓(𝑥, 𝑦̅)| ≤
𝑚

(𝑥 − 𝑥0)𝛾
|𝑦 − 𝑦̅|𝛼, 𝑥 > 𝑥0 

is still not considered.          

 

3. Methods 

Inspired by the previous works in the literature, in this paper, we improve some conditions 

in the work of Krasnosel'skii and Krein (1956) for the problem (1). More precisely, we 

show that the condition (3) can be replaced by the weaker condition (4). It is worth 

mentioning that this condition means f may have a singularity at 𝑥 = 𝑥0.  
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In this paper, we improve the method used in the work of Krasnosel'skii and Krein (1956). 

First, we transform the problem into an integral equation, and then we use the 

contradiction principle to show that the problem has at most one solution.  

The remainder of the present paper is outlined as follows. In section 2, we state and prove 

the main result of the paper. In section 3, a befitting example is structured to show the 

applicability of the theoretical result. 

 

4. Results 

In this section, we establish an additional condition to achieve the uniqueness of the 

solutions of the initial value problem (1).  

4.1. Uniqueness result 

Theorem 2.1. Let 𝑓(𝑥, 𝑦) be continuous in 𝑆̅ and for all (𝑥, 𝑦), (𝑥, 𝑦̅) ∈ 𝑆̅ it satisfies 

|𝑓(𝑥, 𝑦) − 𝑓(𝑥, 𝑦̅)| ≤ 𝒌|𝑥 − 𝑥0|−𝟏|𝑦 − 𝑦̅|, 𝑥 ≠ 𝑥0, 𝑘 > 1                 (3) 

and the condition 

|𝑓(𝑥, 𝑦) − 𝑓(𝑥, 𝑦̅)| ≤
𝑚

(𝑥−𝑥0)𝛾
|𝑦 − 𝑦̅|𝛼, 𝑚 > 0, 𝛾 < 1, 0 < 𝛼 < 1, 𝛾 + 𝑘(1 − 𝛼) < 1  

(4) 

(k(1−𝛼) < 1 is no restriction at all,when k≤ 1. ) 

Then, the initial value problem (1) has at most one solution in |𝑥 − 𝑥0| ≤ 𝑎. 

To prove the main result, we use the following lemma. 

Lemma 2.1 (see [4]). Let 𝑓(𝑥, 𝑦) be continuous in the domain D, then any solution of (1) 

is also a solution of the integral equation 

           𝑦(𝑥) = 𝑦𝟎 + ∫ 𝑓(𝑡, 𝑦(𝑡))𝑑𝑡
𝑥

𝑥0
                                                                        (2) 

and conversely. 

Using the above lemma, we present the proof of the main result in detail.  

Proof.  Suppose 𝑦(𝑥) and 𝑦̅(𝑥) are two solutions of (1) in |𝑥 − 𝑥0| ≤ 𝑎. We will show 

that 𝑦(𝑥) = 𝑦̅(𝑥) in the interval [𝑥0, 𝑥0 + 𝑎]. 

We now let ∅(𝑥) = |𝑦(𝑥) − 𝑦̅(𝑥)|. From the assumption (4) and (2), we obtain 

∅(𝑥) ≤ ∫ |𝑓(𝑡, 𝑦(𝑡)) − 𝑓(𝑡, 𝑦̅(𝑡))|𝑑𝑡
𝑥

𝑥0

 

                                                 ≤ ∫
𝑚

(𝑥−𝑥0)𝛾
|𝑦(𝑡) − 𝑦̅(𝑡)|𝛼𝑑𝑡

𝑥

𝑥0
 

                                                 = ∫
𝑚

(𝑥−𝑥0)𝛾 ∅𝛼(𝑡)𝑑𝑡
𝑥

𝑥0
 

We get  

𝑅(𝑥) =  ∫
𝑚

(𝑥−𝑥0)𝛾 ∅𝛼(𝑡)𝑑𝑡
𝑥

𝑥0
, 

then 

http://www.tdmujournal.vn/


Thu Dau Mot University Journal of Science  ISSN (print): 1859-4433; (online): 2615-9635 

www.tdmujournal.vn   Page 628 

𝑅(𝑥0) = 0, 

and  

𝑅′(𝑥) =
𝑚

(𝑥 − 𝑥0)𝛾
∅𝛼(𝑥) 

≤
𝑚

(𝑥 − 𝑥0)𝛾
𝑅𝛼(𝑥) 

This implies that 

𝑅′(𝑥) −  
𝑚

(𝑥 − 𝑥0)𝛾
𝑅𝛼(𝑥) ≤ 0 

Since 𝑅(𝑥) > 0 for all 𝑥 > 𝑥0, on multiplying this inequality by (1 − 𝛼)𝑅−𝛼(𝑥), we have 

(𝑅1−𝛼(𝑥))′ ≤
𝑚(1 − 𝛼)

(𝑥 − 𝑥0)𝛾
 

                     ≤
𝑚

(𝑥 − 𝑥0)𝛾
  

and hence 

𝑅1−𝛼(𝑥) ≤ ∫
𝑚

(𝑡 − 𝑥0)𝛾
𝑑𝑡

𝑥

𝑥0

 

                       =
𝑚

(1 − 𝛾)(𝑥 − 𝑥0)𝛾−1
 

Thus, it follows that 

∅(𝑥) ≤ 𝑅(𝑥) 

                                                    ≤ (
𝑚

1 − 𝛾
(𝑥 − 𝑥0)𝛾−1)

(1−𝛼)−1

 

So, the function 𝜔(𝑥) =
∅(𝑥)

(𝑥−𝑥0)𝑘 satisfies the inequality 

0 ≤ 𝜔(𝑥) ≤ (
𝑚

1 − 𝛾
)

(1−𝛼)−1

(𝑥 − 𝑥0)(1−𝛾)(1−𝛼)−1−𝑘 

Since 𝛾 + 𝑘(1 − 𝛼) < 1, it leads to lim
𝑥→𝑥0

+
𝜔(𝑥) = 0. Therefore, if we define 𝜔(𝑥) = 0, 

then the function 𝜔(𝑥) is continuous in [𝑥0, 𝑥0 + 𝑎]. We will show that 𝜔(𝑥) = 0 in 
[𝑥0, 𝑥0 + 𝑎]. In fact, if 𝜔(𝑥) > 0 at any point in [𝑥0, 𝑥0 + 𝑎], then there exists a point 

𝑥1 > 𝑥0 such that  

0 < 𝑙 = 𝜔(𝑥1) = 𝑚𝑎𝑥𝑥0≤𝑥≤𝑥0+𝑎𝜔(𝑥) 

However, from (3) we obtain 

𝑙 = 𝜔(𝑥1) =
∅(𝑥1)

(𝑥1 − 𝑥0)𝑘
 

            ≤ (𝑥1 − 𝑥0)−𝑘 ∫ |𝑓(𝑡, 𝑦(𝑡)) − 𝑓(𝑡, 𝑦̅(𝑡))|𝑑𝑡
𝑥1

𝑥0
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              ≤ (𝑥1 − 𝑥0)−𝑘 ∫ 𝑘|𝑡 − 𝑥0|−1|𝑦(𝑡) − 𝑦̅(𝑡)|
𝑥1

𝑥0

𝑑𝑡 

≤ (𝑥1 − 𝑥0)−𝑘 ∫ 𝑘(𝑡 − 𝑥0)−1∅(𝑡)
𝑥1

𝑥0

𝑑𝑡 

               ≤ (𝑥1 − 𝑥0)−𝑘 ∫ 𝑘(𝑡 − 𝑥0)−1(𝑡 − 𝑥0)𝑘𝜔(𝑡)𝑑𝑡
𝑥1

𝑥0
 

< 𝑙(𝑥1 − 𝑥0)−𝑘 ∫ 𝑘(𝑡 − 𝑥0)𝑘−1𝑑𝑡
𝑥1

𝑥0

 

                                                  =  𝑙, 

which is the desired contradiction. Thus, 𝜔(𝑥) = 0, and then ∅(𝑥) = 0 in [𝑥0, 𝑥0 + 𝑎]. 

The proof is similar in the interval [𝑥0 − 𝑎, 𝑥0].  ∎ 

4.2. Example 

In this section, we construct an example to show the applicability of the obtained 

theoretical result. 

More specifically, we consider the initial value problem: 

𝑦′ = 𝑓(𝑥, 𝑦) =

{

0,                                                                 0 ≤ 𝑥 ≤ 1,   (𝑥 −  𝑥0)(1 − 𝛼)−1
< 𝑦 < ∞

𝑘(𝑥 − 𝑥0)(1−𝛾+𝛼𝛾)(1−𝛼)−1
− 𝑘

𝑦

(𝑥−𝑥0)𝛾 , 0 ≤ 𝑥 ≤ 1, 𝑥 ≠ 𝑥0, 0 ≤ 𝑦 ≤ (𝑥 − 𝑥0)(1−𝛼)−1

𝑘(𝑥 −  𝑥0)(1−𝛾+𝛼𝛾)(1−𝛼)−1
,                      0 ≤ 𝑥 ≤ 1, 𝑥 ≠ 𝑥0, −∞ < 𝑦 < 0                  

  (

5) 

y(0)=0, 

where 0<𝛼 < 1, 𝑘 > 0 and 𝛾 < 1, 𝛾 +  𝑘(1 − 𝛼) < 1. 

Solve. This function f(x,y) is continuous at (0, y) for 0 ≤ 𝑦 ≤ (𝑥 − 𝑥0)(1−𝛼)−1
 since 

|𝑘(𝑥 − 𝑥0)(1−𝛾+𝛼𝛾)(1−𝛼)−1
− 𝑘

𝑦

(𝑥 − 𝑥0)𝛾
|

≤ 𝑘(𝑥 − 𝑥0)(1−𝛾+𝛼𝛾)(1−𝛼)−1
+ 𝑘

(𝑥 − 𝑥0)(1−𝛼)−1

(𝑥 − 𝑥0)𝛾
 

                                                                      = 2𝑘(𝑥 − 𝑥0)(1−𝛾+𝛼𝛾)(1−𝛼)−1
→ 0 as x→ 𝑥0 

Thus, it is clear that f(x,y) is continuous in the strip 0≤ 𝑥 ≤ 1, |𝑦| < ∞. 

Next, we shall verify the conditions (3) and (4) by considering the following cases: 

Suppose 0≤ 𝑦, 𝑦̅  ≤ (𝑥 − 𝑥0)(1−𝛼)−1
 𝑡ℎ𝑒𝑛 

|𝑓(𝑥, 𝑦) − 𝑓(𝑥, 𝑦̅)| = |−𝑘
𝑦

(𝑥 − 𝑥0)𝛾
+ 𝑘

𝑦̅

(𝑥 − 𝑥0)𝛾
| 

             =
𝑘

(𝑥 − 𝑥0)𝛾
|𝑦 − 𝑦̅| 
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      ≤
𝑘

𝑥 − 𝑥0

|𝑦 − 𝑦̅| 

and 

|𝑓(𝑥, 𝑦) − 𝑓(𝑥, 𝑦̅)| =
𝑘

(𝑥 − 𝑥0)𝛾
|𝑦 − 𝑦̅|1−𝛼|𝑦 − 𝑦̅|𝛼 

                                            ≤
𝑘

(𝑥 − 𝑥0)𝛾
(|𝑦| + |𝑦̅|)1−𝛼|𝑦 − 𝑦̅|𝛼 

                                                             ≤
𝑘

(𝑥 − 𝑥0)𝛾
21−𝛼(𝑥 − 𝑥0)(1−𝛼)−1(1−𝛼)|𝑦 − 𝑦̅|𝛼 

                   =
21−𝛼𝑘

(𝑥 − 𝑥0)𝛾−1
|𝑦 − 𝑦̅|𝛼. 

Suppose (𝑥 − 𝑥0)(1−𝛼)−1
< 𝑦 < ∞, −∞ < 𝑦̅ < 0, then 

|𝑓(𝑥, 𝑦) − 𝑓(𝑥, 𝑦̅)| = |−𝑘(𝑥 − 𝑥0)(1−𝛾+𝛼𝛾)(1−𝛼)−1
| 

     <
𝑘

(𝑥 − 𝑥0)𝛾
𝑦 

               <
𝑘

(𝑥 − 𝑥0)𝛾
|𝑦 − 𝑦̅| 

         <
𝑘

𝑥 − 𝑥0

|𝑦 − 𝑦̅| 

and 

|𝑓(𝑥, 𝑦) − 𝑓(𝑥, 𝑦̅)| = 𝑘(𝑥 − 𝑥0)(1−𝛾+𝛼𝛾)(1−𝛼)−1
 

                                                 = 𝑘(𝑥 − 𝑥0)(1−𝛾)(𝑥 − 𝑥0)𝛼(1−𝛼)−1
 

                    <
𝑘

(𝑥 − 𝑥0)(𝛾−1)
𝑦𝛼 

                             <
𝑘

(𝑥 − 𝑥0)(𝛾−1)
|𝑦 − 𝑦̅|𝛼 

                     <
21−𝛼𝑘

(𝑥 − 𝑥0)𝛾
|𝑦 − 𝑦̅|𝛼 

Suppose (𝑥 − 𝑥0)(1−𝛼)−1
< 𝑦 < ∞,0≤ 𝑦̅  ≤ (𝑥 − 𝑥0)(1−𝛼)−1

 then 

          |𝑓(𝑥, 𝑦) − 𝑓(𝑥, 𝑦̅)| = |−𝑘(𝑥 − 𝑥0)(1−𝛾+𝛼𝛾)(1−𝛼)−1
+ 𝑘

𝑦̅

(𝑥−𝑥0)𝛾
| 

                                =
𝑘

(𝑥 − 𝑥0)𝛾
|(𝑥 − 𝑥0)(1−𝛼)−1

− 𝑦̅| 

<
𝑘

𝑥 − 𝑥0

|𝑦 − 𝑦̅| 

and 
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            |𝑓(𝑥, 𝑦) − 𝑓(𝑥, 𝑦̅)| = 𝑘 |
(𝑥 − 𝑥0)(1−𝛼)−1

− 𝑦̅

(𝑥 − 𝑥0)𝛾
| 

                                               

=
𝑘

(𝑥 − 𝑥0)𝛾−1
[(𝑥 − 𝑥0)(1−𝛼)−1

− 𝑦̅]
𝛼

[
(𝑥 − 𝑥0)(1−𝛼)−1

− 𝑦̅

(𝑥 − 𝑥0)(1−𝛼)−1 ]

1−𝛼

 

≤
𝑘

(𝑥 − 𝑥0)𝛾−1
[(𝑥 − 𝑥0)(1−𝛼)−1

− 𝑦̅]
𝛼

 

                                                <
𝑘

(𝑥 − 𝑥0)𝛾−1
[𝑦 − 𝑦̅]𝛼 

                                               <
21−𝛼𝑘

(𝑥 − 𝑥0)𝛾
|𝑦 − 𝑦̅|𝛼 

Suppose 0≤ 𝑦 ≤ (𝑥 − 𝑥0)(1−𝛼)−1
, − ∞ < 𝑦̅ < 0, then 

|𝑓(𝑥, 𝑦) − 𝑓(𝑥, 𝑦̅)|

= |𝑘(𝑥 − 𝑥0)(1−𝛾+𝛼𝛾)(1−𝛼)−1
− 𝑘

𝑦

(𝑥 − 𝑥0)𝛾

− 𝑘(𝑥 − 𝑥0)(1−𝛾+𝛼𝛾)(1−𝛼)−1
|    = |𝑘

𝑦

(𝑥 − 𝑥0)𝛾
| <

𝑘

(𝑥 − 𝑥0)𝛾
|𝑦 − 𝑦̅|

<
𝑘

𝑥 − 𝑥0

|𝑦 − 𝑦̅| 

and 

|𝑓(𝑥, 𝑦) − 𝑓(𝑥, 𝑦̅)| = 𝑘
𝑦

(𝑥 − 𝑥0)𝛾
 

                                        ≤
𝑘𝑦𝛼

(𝑥 − 𝑥0)(𝛾−1)
 

                                       <
𝑘|𝑦 − 𝑦̅|𝛼

(𝑥 − 𝑥0)(𝛾−1)
 

                                        <
21−𝛼𝑘|𝑦 − 𝑦̅|𝛼

(𝑥 − 𝑥0)𝛾
 

Since all the conditions of theorem 3.1 are satisfied, the initial value problem (5) has a 

unique solution in [0, 1].  

 

5. Conclusions 

In this paper, we have extended the uniqueness result in the work of Krasnosel'skii and 

Krein (Krasnoselskii and Krein, 1956). The obtained result can apply to many classes of 

differential equations where the source functions have a singularity. An example has been 

constructed to show the applicable of the theoretical result. We emphasize that the results 

in (Krasnoselskii and Krein, 1956) cannot give us any conclusion on the uniqueness of 

the equation in this example. In future works, we will develop our method to study the 

other class of differential equations with singularity source terms. 
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