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ABSTRACT
In this paper we consider the value boundary problem
{ D%y () + qy(t) =0,a<t<b,l1<a <2,
y(a) =y(b) =0,
where g € C1[a,b], and q:[a, b] = R is a continuous function. We obtained a

Lyapunov-type inequality as follows:
b

[l9®) - g0 g @laelas = @)

a

This result is new to the corresponding results in the literature.

Keywords: Lyapunov-type inequalities, the generalized Caputo fractional
derivatives, the Green’s function

1. Introduction

If y(t) is a nontrivial solution of differential system
y'(t) +r(y(t) =0,a<t<b,
{ y(a) =y(b) =0,
where r(t) is a continuous function defined in [a,b], then
b

4
flr(t)ldt > r— (Lyapunov, 1907).

a
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Lyapunov-type inequalities for fractional differential equations with different boundary
conditions have been investigated by many researchers in recent years.

Ferreira (2013) considered the fractional differential equation with boundary conditions:
D% () +q(t)y(t) =0,a<t<b,1<a <2
{ 1.1)
y(a) =y() =0
where D*(.) is the Riemann-Liouville fractional derivative, and g:[a,b] > R is a

continuous function. He obtained a Lyapunov-type inequality for the problem (1.1) as
follows:

a-—1

b
[laas > r@ (=)

Ferreira (2014) replaced the Reimann-Liouville fractional derivative in problem (1.1)
with Caputo fractional derivative $D%(.):
{gmy(t) +q)y(t) =0,a<t<bl<a <2
y(a) =y(b) =0,
and he obtained a Lyapunov-type inequality for the problem (1.2) as follows:

(1.2)

I'a)a”®
[(a — DB —a)]*
In this paper, we replace the Caputo fractional derivative in problem (1.2) with the left

g-Caputo fractional derivative ,$D*9(.). Particularly, we consider the boundary value
problem:

b
]Iq(S)Ids > (1.3)

{aiDargy(t) +qy(t) =0,a<t<bl<a <2 (1.4)
y(@) =y(b) =0 '
where g € C}[a, b], and q: [a, b] — R is a continuous function.
We obtained a Lyapunov-type inequality for the problem (1.4) as follows:
b
[l9®) - g0 g @laelas = @) (15)

a

This result is new to the corresponding results in the literature.

As a special case (see Corollary 3.4), letting g(t)=t, t € [a,b] in the problem (1.4)
reduces it to the problem (1.2) and the corresponding inequality becomes

b
j (b — )% |q(s)]ds > [(a)

We give an example (see Example 3.5) in which we use Corollary 3.4 to show that the
boundary value problem has no nontrivial solution.
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2. Preliminaries
In this section, we recall some basic definitions. For convenience in writing, we denote
Ctla,b] ={g € C'[a,b]: g'(t) > 0,V t € [a,b]}

Definition 2.1 (1. Podlubny, 1999). Let ¢ € C"[a,b],n € N*, and a € (n, n-1), then the
Caputo fractional derivative of order a is the expression

R ey f (t — )1 p(s)ds,

where I'(.) is the Gamma function.

Ddefinition 2.2 (T.J. Osler, 1970). Let « >0, g € Ci[a,b], and ¢ € C'[a, b]. The
fractional integral of a function ¢ with respect to the function g is defined by

1996(0) = —— [ 190 - gn1g' 0 )0
a+ F(CC)

Definition 2.3 (R. Almeida, 2017). Let « >0, n € N*; g,¢ € C™[a, b] two functions
such that g '(1)>0, V'te [a, b]. The left g-Caputo fractional derivative of ¢ of order a is
given by

1 d
CDag¢(t) — In a9 <g'(t) %)
t

— 1 n—a-1 .,/ d " d
- m![g(t)—g(@] 9O (z555) O

For g(t)=t, t € [a,b], the left g-Caputo fractional derivative ,$D*9(.) is becomes the
Caputo fractional derivative {D%(.).

n

Lemma 2.4 (R. Almeida, 2017). Letn e N*,n— 1 < a <n,and g € C}[a, b], we have

(52 ED%9)(©) = $(O) + ) celg(® = g(@I*, ci€ R, (k = 0,..,n— 1.
k=0

3. Main Results

Lemma 3.1. Let 1< a < 2, and g € Ci[a, b]. Suppose that y(t) is a solution of the
problem (1.4). Then y(t) is a solution of the following integral equation

b
1
y(t) = @ f G(t,5)[gb) — g(s)]* g’ (s)q(s)y(s)ds,
where
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g -g@ (g(t) - g<s>>“ '

besy = | IB 9@ \gB—g)  “ETTEER
9 - g(@ ey
9@ - g(@)’ e=t=s=o

Proof. By using Lemma 2.4, we can rewrite (1.4) in the following form

y(®) = —17y(©q®) + co + c1lg(®) — g(@], (co,c1 ER)

_1 £
= mf[g(t) —9($)]* g’ (5)q(s)y(s)ds + co + c1[g(t) — g(a)]

From the condition y(a)=0, we see that ¢, = 0. Furthermore, from y(b)=0, we get

b
= ! — a-1 ./
“7 g0 - g@IT(@) J [g(b) = g(£)]* 7" g'(s)q(s)y(s)ds.

Thus, we obtain

b
1
y(t) = mf G(t,s)[gb) — g()]* g’ (s)q(s)y(s)ds,

where
rg(t) —g(a) g(t) = g(s) a-1
G(t s)=!g(b)—g(a)_(g(b)—g(s)) , ass<t<hb,
' 9(® - g(@)
gb) —g(a)’ a<t<s<bh.

The proof of Lemma is completed.
Lemma 3.2. Let the Green's function G(t,s) be defined as in (3.1). Then
tlgg[agfb] |G(t,s)| = 1.

Moreover,
|G(t,s)| = 1ifand only if t=s=h.

ctec< _ 90-g(@)
Proof. Fora <t <s <b, we have G(t,s) 750 Clearly,

0 <G(t,s) <1,and G(t,s)=1if and only if t=s=b.
For a <s <t<b, we consider the function

g) —gla) (g(t) —g(s)
g) —gla) \gb)—g(s)
By fixing t €[a,b] and taking the derivative with respect to s, we get

a—-1
h(t,s) = > ,a<s<t<hl<a<?2.
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g_iz ) = (@—1) g'([gb) — g@®)] <g(t) —9g(s)

[g(b) —g(s)]> \g(b) — g(s)
Hence, h(t,s) is a monotone function of s, so

a—2
) >0,Vass<t<bh.

1> h(t,t) > h(t,s) = h(t,a),fora<s<t<h. (3.3)
On the other hand,
g -g@ (9 —g@\"
h(t,a) = FIORTIO) (g(b) — g(a)> <0,Vt # a. (3.4)

Combining (3.2), (3.3), and 3.4), we get

t;ré[c‘%] |G(t,s)| = tgl[%c]{l, |h(t,a)|}.

By differentiating h(t,a) with respect to t, we obtain

oh . g® | _ . (90-g@\

ot "= - g | D(g(b)—g(a)) ]
Thus

dh

E(t*'a) =0 gt =(a- 1)ﬁ [9(b) — g(a@)] + g(a).

Since g(a) < g(t*) < g(b)and g'(t) > 0,Vt € [a,b], we have a < t* < b.
Note that, h(a,a)=h(b,a)=0, and

1
h(t*,a) = az-« [1—(a—1)*"1] <0,
we can conclude that

1
max |h(t,a)| = |h(t*,a)| = az—« [(a — 1)* 1 -1] < 1.
t€[a,b]

In the case of o =2, then h(t,a)=0, V't €[a, b].

Hence,

maxy sefq,p] |G (¢, 5)|=max {1, |h(t*, a)|} = 1 and |G(t,s)|=1 if and only if t=s=b,
as required.

Theorem 3.3. Suppose that y(t) is the nontrivial solution of the problem (1.4), then

b
j lg(b) — g(@]g'()]q(s)]ds = I'(@).

Proof. By Lemma 3.1, we have

1

ly(O)] < T@

b
f G, )[g(B) — g()]*g'()la(ly(s)Ids, vt € [a, b],
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”y” a-1 ./
= T T(a) ), [ (b) = g(s)]* " g'(s)lq(s)]ds.
Hence,
” ||< M b[ (b)— (s)]a—l /(S)I (S)IdS
s 5y ) 9B =91 g (9la()lds,
or

b
f [g(®) — g(H]* g’ (9lg(s)lds = T(a),

which finishes the proof.

When g(t)=t, t € [a,b], then the problem (1.4) reduces it to the problem (1.2). From
Theorem 3.3 we get the following result:

Corollary 3.4. If

b
[ 6-9a@les <r@,

then the boundary value problem (1.2) has no nontrivial solution.
Example 3.5. Consider the boundary value problem:

5t
0iDSy () + Sy =00<t<1,
y(0) =y(1) = 0.

(3.5)

Since
51 2
Ef (1—15)%5sds = 3< I'(1.5) ~ 0.88623,
0

we see that the problem (3.5) has no nontrivial solution, by Corollary 3.4.

We apply the Theorem 3.3 to find the bound for the eigenvalue of the fractional
boundary value problem:

Corollary 3.6. If the fractional boundary value problem
{aiD“'gy(t) +Ay(t) =0,a<t<bl<ac<?2,
y(0) =y(1) =0,
has a nontrivial solution, then

b
f [g(b) — g(s)]* g () IAlds = I'(a).
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