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ABSTRACT 

It is very common to stabilize the preset value (Wanted value) of analog signals 

such as temperature, pressure, weight, flow, speed in automatic control. However, 

these control objects often have some problems such as overshooting, taking a long 

time to bring the system to a steady value, and large errors. One of the most used 

systems to overcome these problems is the PID, which is a preset stabilizing system 

with a quick function that returns the system to the set value in a short time without 

overshooting. error is close to zero. However, determining the scale parameters Ki, 

integral Kp, and differential Kd for the system to work optimally is a problem that 

needs to be studied. This paper presents how to accurately determine differential, 

integral, and scale coefficients according to 3D virtual reality model. Used a lot in 

simulation modeling for training and practical applications. 
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1. Introduction 

In industrial automation control system, PID algorithm is widely used to stabilize 

physical quantities. However, each different system has different responses, so no PID 

model is used for all, so for each system we have to find out the proportional, integral 

and micro-control parameters. classification… most suitable for each system. When the 

system changes hardware, the PID control parameters must also change, the new control 

responds well with an error close to zero (Ang et al., 2005). 

In order to build a PID control system that meets the constraints of error, overshoot and 
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setup time, a lot of algorithm tools and software support such as automatic detection of 

PID parameters according to algorithms are required. intelligent (Ang et al., 2005). The 

authors of this paper also only followed a specific physical model, still having large 

errors and overshoots as well as a longer establishment time. To overcome noise in the 

PID system, the authors (Han, 2009) used an active anti-noise algorithm in ADRC 

automatic control (Soe & San, 2019). 

The article that finds out the optimal parameters of a PID system of a virtual model is 

done according to the following steps: 

– Programmable PID PLC S7 1500 stably control water level with linear valve 

– Build a 3D virtual model including the tank containing the supply and discharge linear 

control valves 

– Coordinate the S7 1500 PLC program in Tia Portal software and 3D model in Factory 

IO to detect the parameters in the PID algorithm to control the stable system, fully 

meeting the requirements of an optimal control system (Ang et al., 2005; Linkens & 

Abbod, 1992; Sartika et al., 2019; Soe & San, 2019). 

 

2. Theoretical Basis 

2.1. Principle Control 

Linear valve opening angle control by means of Level control system is a simple example 

of controlled system. A sensor measures the water level height and transfers the value to a 

controller. The controller compares the current water level with a setpoint and calculates 

an output value (manipulated variable) for level control (Ang et al., 2005). 

 

 
Figure1. The valve is controlled with the output value of PID_Compact in I/O format 

(parameter Output_PER) by writing the program tag ActuatorInput 
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2.2. PID Algorithm 

PID controller with anti-windup and weighting of the proportional and derivative actions. 

The PID algorithm operates according to the following equation (Sartika et al., 2019): 

 

Symbol  Description  

y Output value of the PID algorithm 

Kp Proportional gain 

s Laplace operator 

b Proportional action weighting 

w Setpoint 

x Process value 

TI Integral action time 

TD Derivative action time 

a Derivative delay coefficient (derivative delay T1 = a × TD) 

c Derivative action weighting 

 

Figure 2. PID Algorithm logic programed in PLC S7 1500 (Soe & San, 2019) 

2.3. PID Turning 

Pretuning 

The pretuning determines the process response to a jump change of the output value and 

searches for the point of inflection. The PID parameters are calculated from the maximum 

rate of rise and dead time of the controlled system. You obtain the best PID parameters when 

you perform pretuning and fine tuning (Al Andzar & Puriyanto, 2019; Sartika et al., 2019). 
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Pretuning requirements: 

• Inactive (State = 0), manual mode (State = 4), or automatic mode (State = 3) 

ManualEnable = FALSE 

• Reset = FALSE 

• The process value must not be too close to the setpoint. 

|Setpoint - Input| > 0.3 * | Config.InputUpperLimit - Config.InputLowerLimit| and 

|Setpoint - Input| > 0.5 * |Setpoint| 

• The setpoint and the process value lie within the configured limits. 

The more stable the process value is, the easier it is to calculate the PID parameters and 

the more precise the result will be. Noise on the process value can be tolerated as long 

as the rate of rise of the process value is significantly higher compared to the noise.  

The setpoint is frozen in the CurrentSetpoint tag. Tuning is canceled when: 

• Setpoint > CurrentSetpoint + CancelTuningLevel orSetpoint < CurrentSetpoint - 

CancelTuningLevel 

Before the PID parameters are recalculated, they are backed up and can be reactivated 

with LoadBackUp. 

The controller switches to automatic mode following successful pretuning. If pretuning is 

unsuccessful, the switchover of the operating mode is dependent on ActivateRecoverMode. 

Fine tuning 

Fine tuning generates a constant, limited oscillation of the process value. The PID 

parameters are recalculated based on the amplitude and frequency of this oscillation. 

PID parameters from fine tuning usually have better master control and disturbance 

characteristics than PID parameters from pretuning. You obtain the best PID parameters 

when you perform pretuning and fine tuning. 

PID_Compact automatically attempts to generate an oscillation greater than the noise of the 

process value. Fine tuning is only minimally influenced by the stability of the process value.  

The setpoint is frozen in the CurrentSetpoint tag. Tuning is canceled when: 

• Setpoint > CurrentSetpoint + CancelTuningLevel or Setpoint < CurrentSetpoint - 

CancelTuningLevel 

Before the PID parameters are recalculated, they are backed up and can be reactivated 

with LoadBackUp. 

Requirements for fine tuning: 

• No disturbances are expected. 

• The setpoint and the process value lie within the configured limits. 

• ManualEnable = FALSE 
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• Reset = FALSE 

• Automatic (State = 3), inactive (State = 0) or manual (State = 4) mode 

Fine tuning proceeds as follows when started from: 

• Automatic mode (State = 3) 

Start fine tuning from automatic mode if you wish to improve the existing PID 

parameters through tuning. 

PID_Compact controls the system using the existing PID parameters until the control 

loop has stabilized and the requirements for fine tuning have been met. Only then will 

fine tuning start. 

• Inactive (State = 0) or manual mode (State = 4) 

If the requirements for pretuning are met, pretuning is started. The determined PID 

parameters will be used for control until the control loop has stabilized and the requirements 

for fine tuning have been met.  

If the process value for pretuning is already too near the setpoint or 

PIDSelfTune.TIR.RunIn = TRUE, an attempt is made to reach the setpoint with the 

minimum or maximum output value. This can produce increased overshoot.  

Only then will fine tuning start. 

The controller switches to automatic mode following successful fine tuning. If fine tuning is 

unsuccessful, the switchover of the operating mode is dependent on ActivateRecoverMode 

(Burinskiene et al., 2018; Kosfeld, 1998; Koshal et al., 2019; Soe & San, 2019). 

The "Fine tuning" phase is indicated with PIDSelfTune.TIR.State 

 

3. Hardware And Software Components 

This paper used Tia Portal V16 software programmed for PLC S7 1500 (CPU 1511-

1PN), connected to Factory IO water level stabilization model by PID algorithm. Block 

Diagram to connected between components was shown as Figure 3. 

 
Figure 3. Block Diagram connected between components 
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4. Technical Results and Discussion 

PID algorithm default parameters could be set up and programed in TIA Portal software 

as Figure 4. 

 

Figure 4 

After time for the system run and found the best parameters it will propose these value of 

Parameters after detecting preturning and fine turning as we presented in Figure 5 below 

 

Figure 5. PID parameters after turning and the Virtual 3D system by Factory IO 

So, after programming the PLC S7 1500 in Tia portal V16 software connecting the 3D 

Factory IO virtual model, we can find the optimal parameters of the PID algorithm. This 

result is used in training students in automation and can be simulated to get PID 

parameters for the actual system after we build a virtual model with supporting software. 
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