In this paper, we establish compactness and continuous dependence on parameters for solution-set of the second order differential inclusion including self-adjoint operator in the form
\begin{align*}
\left\{ \begin{gathered}
\frac{\partial^2}{\partial t^2} u(t,x) +2\mathcal{A} \frac{\partial}{\partial t}u(t,x)+\mathcal{A}^{2} u(t,x) \in F(t,u(t),\mu),\,\, \hfill (t,x)\in [0,T)\times\Omega \\
u(0,x)=\frac{\partial }{\partial t}u(0,x)=0, \,\, \hfill x \in \Omega, \\
%u(T,x) = h(x), \,\, \hfill x\in\Omega,
\end{gathered}\right. %\label{MainProblem}
\end{align*}
where $\mathcal A$ is a self-adjoint operator.
We use the spectral theory on Hilbert spaces to obtain formulation for mild solutions. Using the mild solution formula together with a measure of non-compactness with values in an ordered space, we construct useful bounds for solution operators. Then, we establish necessarily upper semi-continuous and condensing settings, which mainly help to obtain the global existence of mild solutions and the compactness of the mild solution set. Finally, we provide a brief discussion on the continuous dependence of the solution-set on parameter $\mu$.
Publication Information
Publisher
Thu Dau Mot University, Viet Nam
Editor-in-Chief
Assoc. Prof. Nguyen Van Hiep Thu Dau Mot University
Editorial Board
Assoc. Prof. Le Tuan Anh Thu Dau Mot University
PhD. Nguyen Quoc Cuong Thu Dau Mot University
PhD. Doan Ngoc Xuan Thu Dau Mot University
PhD. Nguyen Khoa Truong An Thu Dau Mot University
Assoc. Prof. Nguyen Thanh Binh Thu Dau Mot University
PhD. Le Thi Thuy Dung Thu Dau Mot University
PhD. Ngo Hong Diep Thu Dau Mot University
PhD. Nguyen Duc Dat Duc Ho Chi Minh City University of Industry and Trade
Assoc. Prof. Nguyen Van Duc Animal Husbandry Association of Vietnam
PhD. Nguyen Thi Nhat Hang Department of Education and Training of Binh Duong Province
PhD. Nguyen Thi Cam Le Vietnam Aviation Academy
PhD. Trần Hạnh Minh Phương Thu Dau Mot University
M.A. Pham Van Thinh Thu Dau Mot University
PhD. Nguyen Thi Lien Thuong Thu Dau Mot University