In this study, molecular dynamics simulations were employed to investigate the influence of pressure on the structural properties of silver (Ag) at 300K. The results reveal that an increase in pressure leads to a reduction in nearest-neighbor distance, a promotion of local ordering, and a transition from a largely disordered state to a predominantly face-centered cubic FCC crystalline structure. At intermediate pressures, both hexagonal close-packed HCP and body-centered cubic BCC phases are observed; however, these phases diminish as pressure rises, with FCC becoming the prevailing phase at higher pressures. These findings demonstrate that pressure is a key factor in driving phase transitions and improving crystallinity in metallic systems.