Mango leaves (Mangifera indica) are widely used in traditional medicine and have gained scientific attention for their broad biological activities. Rich in bioactive compounds like mangiferin, flavonoids, phenolic acids, and terpenoids, mango leaves exhibit antioxidant, anti-inflammatory, anti-diabetic, antihypertensive, antimicrobial, gastroprotective hepatoprotective, neuroprotective and other bioactivities. These activities are linked to their ability to neutralize free radicals, modulate signaling pathways, and inhibit pathogenic microorganisms. Mango leaf extracts show promise in managing metabolic disorders, skin conditions, and age-related damage. Despite promising preclinical results, further clinical studies are needed to validate their therapeutic potential and safety in humans.
Phyllanthus (Euphorbiaceae) is widely distributed in tropical and subtropical areas, including Vietnam, where it is considered a valuable medicinal herb. Numerous bioactive compounds from Phyllanthus species have been identified, demonstrating pharmacological effects such as antiallergic, anti-inflammatory, antioxidant, antidiabetic, anticancer, antiviral, antibacterial, antimalarial, and wound healing activities. This review provides a comprehensive summary of Phyllanthus genus and its pharmaceutical properties, emphasizing the methodologies used for bioactive compound extraction and evaluation, as well as their clinical relevance.
Ficus hispida L.f. (FH) is among the widely cultivated tree species in Asian regions. The aim of this work was to determine phenolic and flavonoid contents, antioxidant, in vitro anti-inflammatory activities of FH extracts prepared with methanol (ME), ethanol (ET) and ethyl acetate (EA). The extract obtained from ethyl acetate contained the highest total phenolic and flavonoid contents (92.75 +/- 5.14 mg GAE/g and 5.67 +/- 0.65 mg QE/g), followed by ME and ET. The capacity to scavenge ABTS free radical of the extracts followed the order: EA > ME > ET while their DPPH activity differed insignificantly. The inhibitory effect of EA and ME (IC¬50 = 362.84 +/- 29.05 and 386.95 +/- 11.10 ug/mL, respectively) were higher than that of ET. Correlation analysis showed a high positive correlation between total phenolic content and ABTS activity. The findings of the study would be useful for development of new nature-derived agents for prevention and treatment of diseases.
Naringenin is a member of the flavonoid family. This natural compound represents a large proportion of secondary metabolites produced by higher plants and is a rich part of the human diet. Naringenin also has been used in the pharmaceutical and medical fields as an effective drug for anti-oxidative, anti-cancer, anti-obesity, and anti-inflammatory activities. Naringenin is also a typical plant metabolite, that has never been reported to be produced in prokaryotes. Recently, many papers reported that various members of the Streptomyces family, a genus of actinobacteria, had a novel pathway to produce Naringenin
Indigofera aspalathoides Vahl ex DC. belongs to the Fabaceae family. I. aspalathoides is applied to heal tumors, inflammations, diabetes, leprosy, and kidney illnesses in traditional medicines. Compounds including kaempferol, kaempferol 5-O-β-D-glucopyranoside, 5,4'-dihydroxy 6,8-dimethoxy 7-O-rhamnosyl flavone, indigocarpan, and mucronulatol have isolated from this plant species. Hitherto, there is no comprehensive review available regarding the reported bioactivities of I. aspalathoides. Thus, this article goals to analyze, summarize and document the published bioactivities-related publications. Electronic databases the Web of Science, Scopus, ScienceDirect, and PubMed used to find relevant publications from 1900 to December 2020. Thus far, only in vivo and in vitro scientific evidence levels of bioactivities are available. I. aspalathoides holds such as anti-inflammatory, anticancer, antihepatotoxic, anti-arthritic, immunomodulatory, and antidiabetic properties. Overall, immunomodulatory, anti-inflammatory, and anticancer compounds have been isolated from this plant species Therefore, additional bioactivity and phytochemical-related researches would need to perform to generate more scientific evidence for other applications. This work will be useful for further bioactivity and phytochemical studies using this plant species.