The rising demand for automation in agriculture and manufacturing necessitates efficient, cost-effective sorting systems to replace labor-intensive manual processes. This paper introduces an innovative system integrating a Siemens S7-1200 Programmable Logic Controller (PLC), LabVIEW-based image processing, and OPC (OLE for Process Control) communication for automated tomato sorting. Utilizing real-time vision analysis, the system classifies tomatoes by color and size, offering a low-cost, scalable solution tailored for small-scale industries. A high-resolution camera captures images, processed in LabVIEW using HSV color space and size thresholds, with results relayed via OPC to the PLC, which actuates a stepper motor-driven sorting mechanism. Experimental validation in a controlled setting achieved 92% sorting accuracy and a throughput of 60 tomatoes per minute, surpassing manual sorting in speed and consistency. The modular design supports scalability to other agricultural products, enhancing its practical utility.
This paper presents a method for liquid level stabilization using a fuzzy logic algorithm implemented on the PLC S7-1200. Maintaining liquid levels accurately is a critical requirement in various industrial processes to ensure safety, efficiency, and consistent product quality. The proposed approach employs fuzzy logic to manage the inherent nonlinearities and uncertainties in the system, providing robust control performance under varying operating conditions. The fuzzy controller is designed with rules and membership functions tailored to the dynamic characteristics of the liquid level system. The control logic is programmed and deployed on the Siemens PLC S7-1200, a widely used industrial automation device. Experimental results demonstrate that the fuzzy logic controller effectively stabilizes the liquid level, achieving better performance compared to traditional PID controllers in terms of response time, overshoot, and steady-state error. This study highlights the potential of integrating fuzzy logic with PLCs for advanced industrial automation applications.
It is very common to stabilize the preset value (Wanted value) of analog signals such as temperature, pressure, weight, flow, speed in automatic control. However, these control objects often have some problems such as overshooting, taking a long time to bring the system to a steady value, and large errors. One of the most used systems to overcome these problems is the PID, which is a preset stabilizing system with a quick function that returns the system to the set value in a short time without overshooting. error is close to zero. However, determining the scale parameters Ki, integral Kp, and differential Kd for the system to work optimally is a problem that needs to be studied. This paper presents how to accurately determine differential, integral, and scale coefficients according to 3D virtual reality model. Used a lot in simulation modeling for training and practical applications.
Automation or automatic control has been a growing trend in industrial fields as well as in life because of the advantages and utilities that help optimize work and reduce manpower in production. In medium and large scale automatic control systems, PLC (Programmable Logic Controller) is used as the control device for the system. In production, the transmission system using motors takes a large proportion and the problem of controlling for them to operate correctly, meeting technological requirements is one of the difficulties that need to be solved. In this study, we have applied PLC to stabilize motor speed according to preset value using PID algorithm integrated in Siemens S7–1200 PLC in order to apply research results in practice. At the limit of the article, we will present the issues of PID function block configuration, programming algorithm flowchart for PLCs, and monitoring console design for a small DC motor drive system model to verify.
Variable Frequency Drives (VFDs) are electronic power controllers that allow for accurate control of the speed of alternating current (AC) induction motors that used in many kinds of machines including fans, pumps and compressors. These motors are used in most heating, ventilation and air-conditioning (HVAC) systems and account for a significant percentage of the total HVAC energy consumption. More efficient operation of these motors using VFDs can result in significant energy savings. Besides, the communication between VFDs and PLC for Supervisory Control And Data Acquisition (SCADA) is also important. Modbus protocol has many kinds as RS485, RTU, Profinet,...In this paper we will present the communication between a PLC Siemens S7-1200 and an ATV310 Drive (Schneider) via Modbus RTU protocol which is supported.
Trong bài báo này đề cập đến phương pháp xây dựng bài giảng môn Tự động hóa quá trình công nghệ dành cho sinh viên chuyên ngành Kỹ thuật Điện – Điện tử của Trường Đại học Công nghệ Đồng Nai (DNTU). Mục tiêu chính của môn học là nhấn mạnh vào các kĩ năng: Làm việc nhóm, làm việc độc lập, cách giải quyết vấn đề, thiết kế và vận hành các hệ thống điều khiển tự động. Bài giảng được xây dựng dựa trên việc phân chia các nhóm sinh viên (mỗi nhóm gồm có 5 sinh viên) thực hiện trên bài tập lớn được giao ở trong phòng thí nghiệm. Cách thực hiện bài tập trong phòng thí nghiệm của sinh viên: Trước tiên sinh viên phải có một bài giới thiệu, trong bài giới thiệu nêu rõ: Cách giải quyết vấn đề, công tác chuẩn bị công việc, cách làm việc độc lập trong phòng thí nghiệm, cách làm việc nhóm . Sau đó sẽ là một buổi báo cáo tổng kết. Ngoài ra, có một dự án nhỏ mà nhiệm vụ của sinh viên là viết hướng dẫn quy trình sử dụng cho người vận hành. Để làm được điều này yêu cầu sinh viên phải hiểu biết sâu về hệ thống điều khiển PLC trong công nghiệp (Bộ điều khiển lập trình logic), phát triển giao diện điều khiển người máy và HMI, cảm biến công nghiệp, các cơ cấu chấp hành.