Thu Dau Mot University Journal of Science


A study of fixed points and hopf bifurcation of hindmarsh-rose model

By Phan Văn Long Em
DOI: 10.37550/tdmu.EJS/2020.01.002

Abstract

In this article, a class of Hindmarsh-Rose model is studied. First, all necessary conditions for the parameters of system are found in order to have one stable fixed point which presents the resting state for this famous model. After that, using the Hopf’s theorem proofs analytically the existence of a Hopf bifurcation, which is a critical point where a system’s stability switches and a periodic solution arises. More precisely, it is a local bifurcation in which a fixed point of a dynamical system loses stability, as a pair of complex conjugate eigenvalues cross the complex plane imaginary axis. Moreover, with the suitable assumptions for the dynamical system, a small-amplitude limit cycle branches from the fixed point.


Full text

View PDF

References

Arena P., Fortuna L., Frasca M., La RosaM., (2006). Locally active Hindmarsh-Rose neurons,Chaos Sol. and Fract. 27:405-412.

Dang-Vu Huyen, and Delcarte, C., (2000). Bifurcations and Chaos, an introduction todynamicscontemporary with programs in Pascal, Fortan et Mathematica. Eds Elipses,Université – Mécanique (in french).

Ermentrout, G. B., Terman, D. H., (2009). Mathematical Foundations of Neurosciences.Springer.

Hodgkin, A.L., and Huxley, A. F., (1952). A quantitative description of membrane current andits application to conduction and excitation in nerve. J. Physiol. 117: 500-544.

Izhikevich, E. M., (2007). Dynamical Systems in Neuroscience. The MIT Press.

Keener, J. P., and Sneyd, J., (2009). Mathematical Physiology. Springer.

Murray, J. D., (2010). Mathematical Biology. Springer.

Nagumo, J., Arimoto, S., and Yoshizawa, S., (1962). An active pulse transmission linesimulating nerve axon. Proc. IRE. 50: 2061-2070.

Nikolov S., (2005). An alternative bifurcation analysis of the Rose-Hindmarsh model, ChaosSolitons and Fractal. 23:1643-1649.






Publication Information

Publisher

Thu Dau Mot University, Viet Nam

Editor-in-Chief

Assoc. Prof. Nguyen Van Hiep
Thu Dau Mot University

Editorial Board

Assoc. Prof. Le Tuan Anh
Thu Dau Mot University
PhD. Nguyen Quoc Cuong
Thu Dau Mot University

PhD. Doan Ngoc Xuan
Thu Dau Mot University
PhD. Nguyen Khoa Truong An
Thu Dau Mot University

Assoc. Prof. Nguyen Thanh Binh
Thu Dau Mot University
PhD. Le Thi Thuy Dung
Thu Dau Mot University

PhD. Ngo Hong Diep
Thu Dau Mot University
PhD. Nguyen Duc Dat Duc
Ho Chi Minh City University of Industry and Trade

Assoc. Prof. Nguyen Van Duc
Animal Husbandry Association of Vietnam
PhD. Nguyen Thi Nhat Hang
Department of Education and Training of Binh Duong Province

PhD. Nguyen Thi Cam Le
Vietnam Aviation Academy
PhD. Trần Hạnh Minh Phương
Thu Dau Mot University

M.A. Pham Van Thinh
Thu Dau Mot University
PhD. Nguyen Thi Lien Thuong
Thu Dau Mot University

Prof. Le Quang Tri
Can Tho University
Prof. Banh Quoc Tuan
Thu Dau Mot University