In this paper, we study a class of parametric vector mixed quasivariational
inequality problem of the Minty type (in short, (MQVIP)). Afterward, we
establish some sufficient conditions for the stability properties such as the
inner-openness, lower semicontinuity and Hausdorff lower semicontinuity of
the solution mapping for this problem. The results presented in this paper
is new and wide to the corresponding results in the literature
In this article, a class of Hindmarsh-Rose model is studied. First, all necessary conditions for the parameters of system are found in order to have one stable fixed point which presents the resting state for this famous model. After that, using the Hopf’s theorem proofs analytically the existence of a Hopf bifurcation, which is a critical point where a system’s stability switches and a periodic solution arises. More precisely, it is a local bifurcation in which a fixed point of a dynamical system loses stability, as a pair of complex conjugate eigenvalues cross the complex plane imaginary axis. Moreover, with the suitable assumptions for the dynamical system, a small-amplitude limit cycle branches from the fixed point.